Methods Of Separating Mixtures
Handpicking.
Threshing.
Winnowing.
Sieving.
Evaporation.
Distillation.
Filtration or Sedimentation.
Separating Funnel.
Answer:
Explanation:
4NH₃ (g) + 3O₂ (g) ⇒ 2N₂ (g) + 6H₂ O(1)
Δ
ΔH r =(2ΔH f(N 2 )+6ΔH f (H 2 O(l)))−(4ΔH f (NH 3 (g))+3ΔH f (O 2 (g)))
ΔH rex =[2×0+6×(−286)]−[4×(−46)+3×0]=−1716+186
ΔH rex =−1532kJ/mol
Thermodynamics is a branch of physical chemistry that studies heat and its effects and interactions. Governed by the four main laws, thermodynamics plays a huge role in physics and chemistry, and is also responsible for the law of conservation of energy, a fundamental rule in science.
A. The products of the change are different from the starting
substances.
<u>Explanation:</u>
Whenever there is a physical change it may just affect the phase change but the properties remains the same. Whenever there is an occurrence of a chemical change, it was indicated by some of these things such as,
- The products are exactly different from the products.
- Chemical properties of these reactants are entirely different from that of the products.
- Chemical composition as well as the physical properties of the reactants and the products will change
Answer:
c. Kay's rule
Explanation:
Kay's rule -
The rule is used to determine the pseudo reduced critical parameters of mixture , with the help of using the critical properties of the components of a given mixture .
The equation for Kay's rule is as follows ,
PV = Z RT
Where Z = The compressibility factor of the mixture .
Hence from the given options , the correct answer is Kay's rule .