Answer:
1. Orbital diagram
2p⁴ ║ ↑↓ ║ "↑" ║ ↑
2s² ║ ↑↓ ║
1s² ║ ↑↓ ║
2. Quantum numbers
- <em>n </em>= 2,
- <em>l</em> = 1,
= 0,
= +1/2
Explanation:
The fill in rule is:
- Follow shell number: from the inner most shell to the outer most shell, our case from shell 1 to 2
- Follow the The Aufbau principle, 1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s<5f<6d<7p
- Hunds' rule: Every orbital in a sublevel is singly occupied before any orbital is doubly occupied. All of the electrons in singly occupied orbitals have the same spin (to maximize total spin).
So, the orbital diagram of given element is as below and the sixth electron is marked between " "
2p⁴ ║ ↑↓ ║ "↑" ║ ↑
2s² ║ ↑↓ ║
1s² ║ ↑↓ ║
The quantum number of an electron consists of four number:
- <em>n </em>(shell number, - 1, 2, 3...)
- <em>l</em> (subshell number or orbital number, 0 - orbital <em>s</em>, 1 - orbital <em>p</em>, 2 - orbital <em>d...</em>)
(orbital energy, or "which box the electron is in"). For example, orbital <em>p </em>(<em>l</em> = 1) has 3 "boxes", it was number from -1, 0, 1. Orbital <em>d</em> (<em>l </em>= 2) has 5 "boxes", numbered -2, -1, 0, 1, 2
(spin of electron), either -1/2 or +1/2
In our case, the electron marked with " " has quantum number
- <em>n </em>= 2, shell number 2,
- <em>l</em> = 1, subshell or orbital <em>p,</em>
= 0, 2nd "box" in the range -1, 0, 1
= +1/2, single electron always has +1/2
First option.
The male tails are more attractive because of their long feathers , meanwhile the female tails are shorter than expected!
ANSWER
EXPLANATION
Given that
The energy released by the system is 12.4J
Work done on the surrounding is 4.2J
Follow the steps below to find the change in energy
In the given data, energy is said to be released to the surroundings
Recall, that exothermic reaction is a type of reaction in which heat is released to the surroundings. Hence, change in enthalpy is negative
Step 1; Write the formula for calculating change in energy

Since heat is released to the surrounding, then q = -12J
Recall, that work done by the system on the surroundings is always negative
Hence, w = -4.2J
Step 2; Substitute the given data into the formula in step 1

Therefore, the change i
The specific heat capacity of the metal given the data from the question is 0.66 J/gºC
<h3>Data obtained from the question</h3>
- Mass of metal (M) = 76 g
- Temperature of metal (T) = 96 °C
- Mass of water (Mᵥᵥ) = 120 g
- Temperature of water (Tᵥᵥ) = 24.5 °C
- Equilibrium temperature (Tₑ) = 31 °C
- Specific heat capacity of the water (Cᵥᵥ) = 4.184 J/gºC
- Specific heat capacity of metal (C) =?
<h3>How to determine the specific heat capacity of the metal</h3>
The specific heat capacity of the sample of the metal can be obtained as follow:
Heat loss = Heat gain
MC(M –Tₑ) = MᵥᵥCᵥᵥ(Tₑ – Tᵥᵥ)
76 × C × (96 – 31) = 120 × 4.184 × (31 – 24.5)
C × 4940 = 3263.52
Divide both side by 4940
C = 3263.52 / 4940
C = 0.66 J/gºC
Learn more about heat transfer:
brainly.com/question/6363778
#SPJ1
Answer:
no
Explanation:
because hypothesis are just what we thing is gonna happen it doesn't have to be true
sorry if im wrong