The angles for the first-order diffraction of the shortest and longest wavelengths of visible light are 22.33 ⁰ and 49.46 ⁰ respectively.
<h3>Angle for the first order diffraction</h3>
The angle for the first order diffraction is calculated as follows;
dsinθ = mλ
sinθ = mλ/d
<h3>For shortest wavelength (λ = 380 nm)</h3>
d = 1/10,000 lines/cm
d = 1 x 10⁻⁴ cm x 10⁻² m/cm = 1 x 10⁻⁶ m/lines
sinθ = (1 x 380 x 10⁻⁹)/(1 x 10⁻⁶)
sinθ = 0.38
θ = sin⁻¹(0.38)
θ = 22.33 ⁰
<h3>For longest wavelength (λ = 760 nm)</h3>
sinθ = (1 x 760 x 10⁻⁹)/(1 x 10⁻⁶)
sinθ = 0.76
θ = sin⁻¹(0.76)
θ = 49.46 ⁰
Learn more about diffraction here: brainly.com/question/16749356
#SPJ1
The impulse is (force) x (time) = (20 N) x (20 sec) = 400 N-sec
When we grind through the units, we find that the [newton-second]
is exactly the same as the [kilogram-meter/sec] unit-wise, and once
we know that, it doesn't surprise us to learn that impulse is equivalent
to a change in momentum (mass x speed ... also kg-m/s).
So this impulse exerted on the moving object adds 400 kg-m/s of
linear momentum to its motion, directed to the right. That may or
may not be the total change in its momentum during that 20-sec,
because our 20-N may not be the only force acting on it.
Answer:
option (D
Explanation:
Torque is given by
torque = N x i x A x B x sinФ
where, N is number of turns, A is area, b is the magnetic field and Ф be the angle between the area vector and the magnetic field vector, i be the current.
So, torque depends on the current.
option (D)
-9.8 m/s^s because thats the earth gravity so it will lose 9.8 m/s^2 until its stop and thats because its the opposite of the force towards the earth!
Hope it helps