1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mote1985 [20]
3 years ago
5

What does the 4 mean in 4Cu(NO3)2

Physics
1 answer:
kotegsom [21]3 years ago
5 0

Answer:

4) Coefficent in science

You might be interested in
A 50.0 g toy car is released from rest on a frictionless track with a vertical loop of radius R (loop-the-loop). The initial hei
Mariana [72]

Answer:

the speed of the car at the top of the vertical loop  v_{top} = 2.0 \sqrt{gR \ \ }

the magnitude of the normal force acting on the car at the top of the vertical loop   F_{N} = 1.47 \ \ N

Explanation:

Using the law of conservation of energy ;

mgh = mg (2R) + \frac{1}{2}mv^2_{top}\\\\mg ( 4.00 \ R) = mg (2R) + \frac{1}{2}mv^2_{top}\\\\g(4.00 \ R) = g (2R) + \frac{1}{2}v^2 _{top}\\\\v_{top} = \sqrt{2g(4.00R - 2R)}\\\\v_{top} = \sqrt{2g(4.00-2)R

v_{top} = 2.0 \sqrt{gR \ \ }

The  magnitude of the normal force acting on the car at the top of the vertical loop can be calculated as:

F_{N} = \frac{mv^2_{top}}{R} \ - mg\\\\F_{N} = \frac{m(2.0 \sqrt{gR})^2}{R} \ - mg\\\\F_{N} = [(2.0^2-1]mg\\\\F_{N} = [(2.0)^2 -1) (50*10^{-3} \ kg)(9.8 \ m/s^2]\\\\

F_{N} = 1.47 \ \ N

4 0
3 years ago
A changing climate has strong implications for biodiversity. Studies of fossil and pollen distribution show that species are ver
ivolga24 [154]
The answer is B i believe.
4 0
2 years ago
Read 2 more answers
Consider two insulating balls with evenly distributed equal and opposite charges on their surfaces, held with a certain distance
siniylev [52]

Answer:

interest point:

1) Point on the left side

2) Point within the radius r₁ of the first sphere

3) Point between the two spheres

4) point within the radius r₂ of the second sphere

5) Right side point

Explanation:

In this case, the total electric field is the vector sum of the electric fields of each sphere, to simplify the calculation on the line that joins the two spheres

       

We will call the sphere on the left 1 and it has a positive charge Q with radius r1, the sphere on the right is called 2 with charge -Q with radius r2. The total field is

          E_ {total} = E₁ + E₂

          E_{ total} = k \frac{Q}{x_1^2} + k  \frac{Q}{x_2^2}

the bold indicate vectors, where x₁ and x₂ are the distances from the center of each sphere. If the distance that separates the two spheres is d

          x₂ = x₁ -d

          E total = k  \frac{Q}{x_1^2} - k \frac{Q}{(x_1 - d)^2}

Let's analyze the field for various points of interest.

1) Point on the left side

in this case

            E_ {total} = k Q \ ( \frac{1}{x_1^2} - \frac{1}{(x_1 +d)2} )

            E_ {total} = k \frac{Q}{x_1^2}   ( 1 - \frac{1}{(1 + \frac{d}{x_1} )^2 } )

We have several interesting possibilities:

* We can see that as the point is further away the field is more similar to the field created by two point charges

* there is a point where the field is zero

            E_ {total} = 0

             x₁² =  (x₁ + d)²

           

2) Point within the radius r₁ of the first sphere.

In this case, according to Gauus' law, the charge is on the surface of the sphere at the point, there is no charge inside so this sphere has no electric field on its inner point

              E_ {total} = -k \frac{Q}{x_2^2} = -k \frac{Q}{((d-x_1)^2}

this expression holds for the points located at

                  -r₁ <x₁ <r₁

3) Point between the two spheres

                E_ {total} = k \frac{Q}{x_1^2} + k \frac{Q}{(d+x_1)^2}

This champ is always different from zero

4) point within the radius r₂ of the second sphere, as there is no charge inside, only the first sphere contributes

                  E_ {total} = + k \frac{Q}{(d-x_1)^2}+ k Q / (d-x1) 2

point range

                  -r₂ <x₂ <r₂

             

5) Right side point

            E_ {total} = k \frac{Q}{(x_2-d)^2} - k \frac{Q}{x_2^2}

             E_ {total} = - k \frac{Q}{x_2^2} ( 1- \frac{1}{(1- \frac{d}{x_2})^2 } )- k Q / x22 (1- 1 / (x1 + d) 2)

we have two possibilities

* as the distance increases the field looks more like the field created by two point charges

* there is a point where the field is zero

8 0
2 years ago
What might cause a theory to change over time?
Olin [163]

Answer:

A theory does not change into a scientific law with the accumulation of new or better evidence. A theory will always remain a theory

Explanation:

theories and laws could potentially be falsified by countervailing evidence. Theories and laws are also distinct from hypotheses.

5 0
3 years ago
The stored energy an object has due to its position is potential energy. True or False?
Tema [17]
True

bla bla bla my answer needs to be 20 characters
7 0
3 years ago
Read 2 more answers
Other questions:
  • a man stands on weighing scale in a lift which carries him upwards with acceleration, what happen please tell
    8·1 answer
  • Air at 1 atm and 20°C is flowing over the top surface of a 0.2 m 3 0.5 m-thin metal foil. The air stream velocity is 100 m/s and
    9·1 answer
  • A sled is moving down a steep hill. The mass of the sled is 50 kg and the net force acting on it is 20 N. What must be done to f
    7·2 answers
  • I'm very confused on this home work question How did magnetism 'drive' the theory of plate tectonics?
    10·1 answer
  • During __________, frequently used synaptic connections in the brain strengthen while rarely used connections tend to thin.
    12·2 answers
  • A swimmer standing near the edge of a lake notices a cork bobbing in the water. While watching for one minute, she notices the c
    10·1 answer
  • A crate with a mass of 193.5 kg is suspended from the end of a uniform boom with a mass of 91.7 kg. The upper end of the boom is
    6·1 answer
  • それで、私はヘビと一緒に座っていました、そしてこれが起こりました、私のヘビは本当に奇妙に行動していたので私は本当に混乱したようでした、私のヘビは本当に奇妙に行動していたので、私はオーロラのようでした、やめてください。それから彼女は私をすべて奇妙に見たので私
    10·1 answer
  • Calculate the average of the following numbers 6g, 8g, 10g and 4g
    14·1 answer
  • Two identical charges are located 1 m apart and feel a 1 N repulsive electric force. What is the charge of each particle.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!