That depends on the weight, shape, size, density, and moisture content
of the cotton ball, as well as on the length, shape, thickness, and surface
texture of every little cotton fiber sticking out of it.
Now you know why we typically ignore air resistance when we work with
objects falling in gravity.
Answer:
1.86 s
Explanation:
Given the expression
h(t) = -16t²+ 64...................... Equation 1
Where h = height of the object, t = time it will take the object to hit the ground.
Given: h = 64 foot.
We have to concert from foot to meters
If 1 foot = 0.3048 meters
Then, 64 foot = 0.3048×64 = 19.51 meters.
We substitute the value of h into equation
119.51 = -16t²+64
-16t² = 199.51-64
-16t² = 55.51
t² = 55.51/-16
t² = 3.469
t = √3.469
t = 1.86 s.
Hence it will take the object 1.86 s to hit the ground.
Answer:
Stellar Spectra Classification The patterns of lines detected in stellar spectra are used by astronomers to classify stars into spectral classes. These spectral classes are a measure of a star's surface temperature since the temperature of a star dictates which absorption lines are present in its spectrum.
Explanation:
The impact speed will be
v^2 = 2*9.8*1.3
v^2 = 25.48
v= 5.04 m/s