1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zloy xaker [14]
3 years ago
12

Based on Archimedes' principle, the greatest buoyant force an object can experience in water is determined by which quantity?

Physics
1 answer:
ValentinkaMS [17]3 years ago
6 0

Answer:

B. The object's volume

Explanation:

When an object is immersed in a fluid, it experiences an upward force which is called buoyant force. The magnitude of the buoyant force is given by:

B=\rho_f V_{disp} g

where

\rho_f is the density of the fluid in which the object is immersed

V_{disp} is the volume of the fluid displaced by the object

g is the acceleration due to gravity

When the object is totally immersed in the fluid, V_{disp} corresponds to the volume of the object; when the object is only partially immersed, V_{disp} corresponds only to the volume of the part of the object immersed.

From the formula, we see that the greatest buoyant force is experienced by the object when it is fully immersed. Moreover, we see that the buoyant force depends only on one property of the object: its volume. Therefore, the correct choice is

B. The object's volume

You might be interested in
what causes sounds? A. electromagnectic energy B. the release of sensory neurons C.movement that causes changes in air placement
bogdanovich [222]

Answer:

D.vibrations that cause changes in air pressure

Explanation:

Sound is a type of wave.

A wave is a periodic disturbance/oscillation that trasmits energy without transmitting matter. There are two different types of waves:

- Transverse waves: in a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. These waves are characterized by the presence of crests (points of maximum positive displacement) and troughs (points of maximum negative displacement). Examples of transverse wave are electromagnetic waves.

- Longitudinal waves: in a longitudinal wave, the direction of the oscillation is parallel to the direction of motion of the wave. These waves are characterized by the presence of compressions (regions where the density of particle is higher) and rarefactions (regions where the density of particle is lower). Examples of longitudinal waves are sound waves.

Sound waves, in particular, consist of vibrations of the particles in a medium - most commonly, air - that occur back and forth along the direction of motion of the wave. Because of these motion, the air will have areas of higher pressure (which correspond to the compressions), where the density of particles is higher, and areas of lower pressure (which correspond to the rarefactions), where density of particles is lower.

3 0
4 years ago
Read 2 more answers
A vertical spring with stiffness k originally is at rest with no mass attached. Then, a mass M is attached, and the spring rocks
Alina [70]

Answer:

The position of the spring in terms of g, m & k is x = \frac{m g}{k}

Explanation:

Stiffness of the spring = k

Mass = m

When a mass m is attached with the spring then spring stretched. in that case the force exerted on the spring is equal to weight of the mass attached.

⇒ Force exerted on the spring F = k x

⇒ m g = k x

⇒ x = \frac{m g}{k}

This is the position of the spring in terms of g, m & k.

8 0
4 years ago
If an object is thrown upward with an initial velocity of 128 ​ft/second, then its height after t seconds is given by the follow
IrinaK [193]

Answer:

The maximum height attained by the object and the number of seconds are 128 ft and 4 sec.

Explanation:

Given that,

Initial velocity u= 128 ft/sec

Equation of height

h = 128t-32t^2....(I)

(a). We need to calculate the maximum height

Firstly we need to calculate the time

\dfrac{dh}{dt}=0

From equation (I)

\dfrac{dh}{dt}=128-64t

128-64t=0

t=\dfrac{128}{64}

t=2\ sec

Now, for maximum height

Put the value of t in equation (I)

h =128\times2-32\times4

h=128\ ft

(b). The number of seconds it takes the object to hit the ground.

We know that, when the object reaches ground the height becomes zero

128t-32t^2=0

t(128-32t)=0

128=32t

t=4\ sec

Hence, The maximum height attained by the object and the number of seconds are 128 ft and 4 sec.

3 0
3 years ago
Explain how soilds non metals are different from solid metals
marysya [2.9K]
Solid metal is all different types of metals or some thing that a magnet can pick up that's a full hard solid

but a non metal is everything not metal that's a solid like plastic a hot glue gun can burn throught plastic and not metal

so in conclusion metal is stronger and thicker than non modal things
7 0
3 years ago
AM Radio Waves
Komok [63]

Answer:

A

Explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • How much heat is absorbed by 34g iron skillet its temperature rises from 12c to 24 c ?
    13·1 answer
  • A representation of a chemical reaction that uses symbols to show the relationship between the reactants and the products is cal
    6·2 answers
  • A supersonic aircraft consumes 5320 imperial gallons of kerosene per hour of flight and flies an average of 14 hours per day. it
    13·1 answer
  • Juan lives 100m away from bill whats juan`s average speed if he reaches bill home in 50 s
    10·1 answer
  • When we talk about how a Ferrari obtains a top speed of 349 km/h, are we referring to average speed or instantaneous? How do you
    13·1 answer
  • How do carbon 12 and carbon 13 differ?
    15·1 answer
  • It took 3.5 hours for a train to travel the distance between two cities at a velocity
    5·1 answer
  • A turtle accelerates from a stop at 3m/s/s to the South for 8s. What is the turtle’s final velocity? Show your work and include
    15·1 answer
  • When a car maintains a velocity of exactly 65 mph, what is it's acceleration​
    12·2 answers
  • A thin flexible gold chain of uniform linear density has a mass of 17.1 g. It hangs between two 30.0 cm long vertical sticks (ve
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!