Calculate the magnetic field strength at the ground. Treat the transmission line as infinitely long. The magnetic field strength is then given by:
B = μ₀I/(2πr)
B = magnetic field strength, μ₀ = magnetic constant, I = current, r = distance from line
Given values:
μ₀ = 4π×10⁻⁷H/m, I = 170A, r = 8.0m
Plug in and solve for B:
B = 4π×10⁻⁷(170)/(2π(8.0))
B = 4.25×10⁻⁶T
The earth's magnetic field strength is 0.50G or 5.0×10⁻⁵T. Calculate the ratio of the line's magnetic field strength to earth's magnetic field strength:
4.25×10⁻⁶/(5.0×10⁻⁵)
= 0.085
= 8.5%
The transmission line's magnetic field strength is 8.5% of that of earth's natural magnetic field. This is no cause for worry.
shhhh hahahaha ahhhhhhhh ahhhh
The test tube that first stops in bubbling or the production of a gas is the tube that contains the catalyst since the reaction ended faster than the others. A catalyst is known to speed up a reaction so it must the situation aforementioned is the answer.
Answer:
The correct statements would be
- Cyanobacteria allowed organisms that rely on oxygen to evolve.
- Cyanobacteria preceded the first photosynthetic organisms.
- Cyanobacteria produced excess oxygen.
Cyanobacteria, also termed as blue-green algae are the prokaryotes which are able to perform photosynthesis.
They were the major contributors of oxygen in the atmosphere and thus helped the organisms that rely on oxygen to evolve.
By the process of endosymbiosis, they lead to the origin of plants. The chloroplasts present in green plants is considered as the cyanobacteria living in the plant cell. It helps in photosynthesis and in return plants cell provides shelter to it.
It is believed that the oxygen released from early cyanobacteria reacted with dissolved iron ions to form iron oxide.