The working equation for this one is:
E = F/Q, where E is the strength of the electric field, F is the electric force and Q is the charge. Substituting the corresponding values, the strength of the electric field is equal to
E = -30 nN/-3 nC
E = 10 nN/nC
Kjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
No. She would be doing the same amount of work that way. Work is defined to be equal to the force multiplied by the distance. Carrying two bags at a time would cause her to exert twice the effort, so the total amount of work done in the end would still be the same.
The the object that has the less mass will travel faster because let’s say for example the first object has the mass of M and the second object has the mass of 2M and if the momentum is equal so that means that we could divide M with M and we would get V1=2V2 (being V1 the velocity of the first mass and V2 the velocity of the second one) I hope I helped you out.
Question:
Consider a sample of helium gas in a container fitted with a piston as pictured below. The piston is frictionless, but has a mass of 10.0 kg. How many of the following processes will cause the piston to move away from the base and decrease the pressure of the gas? Assume ideal behavior.
I. Heating the helium. II.
II. toRemoving some of the helium from the container.
III. Turning the container on its side.
IV. Decreasing the pressure outside the container.
a) 0
b) 1
c) 2
d) 3
e) 4
Answer:
Only one process will cause the piston to move which is
i) Heating the helium
Explanation:
When helium is heated it becomes less dense or lighter. Heating the helium will cause an increase in volume which will make the piston to move away from the base. When the volume finishes increasing, the piston will stop moving which in turn will make the forces on both sides of the piston balanced, so the pressure inside will balance the weight of the piston and that of the atmosphere. From that we can see that there has been a pressure change as a result of heating.