Answer:
Rank in increasing order of effective nuclear charge:
Explanation:
This explains the meaning of effective nuclear charge, Zeff, how to determine it, and the calculations for a valence electron of each of the five given elements: F, Li, Be, B, and N.
<u>1) Effective nuclear charge definitions</u>
- While the total positive charge of the atom nucleus (Z) is equal to the number of protons, the electrons farther away from the nucleus experience an effective nuclear charge (Zeff) less than the total nuclear charge, due to the fact that electrons in between the nucleus and the outer electrons partially cancel the atraction from the nucleus.
- Such effect on on a valence electron is estimated as the atomic number less the number of electrons closer to the nucleus than the electron whose effective nuclear charge is being determined: Zeff = Z - S.
<u><em>2) Z eff for a F valence electron:</em></u>
- F's atomic number: Z = 9
- Total number of electrons: 9 (same numer of protons)
- Period: 17 (search in the periodic table or do the electron configuration)
- Number of valence electrons: 7 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 9 - 7 = 2
- Zeff = Z - S = 9 - 2 = 7
<u><em>3) Z eff for a Li valence eletron:</em></u>
- Li's atomic number: Z = 3
- Total number of electrons: 3 (same number of protons)
- Period: 1 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 1 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 3 - 1 = 2
- Z eff = Z - S = 3 - 2 = 1.
<em>4) Z eff for a Be valence eletron:</em>
- Be's atomic number: Z = 4
- Total number of electrons: 4 (same number of protons)
- Period: 2 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 2 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 4 - 2 = 2
- Z eff = Z - S = 4 - 2 = 2
<u><em>5) Z eff for a B valence eletron:</em></u>
- B's atomic number: Z = 5
- Total number of electrons: 5 (same number of protons)
- Period: 13 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 3 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 5 - 3 = 2
- Z eff = Z - S = 5 - 2 = 3
<u><em>6) Z eff for a N valence eletron:</em></u>
- N's atomic number: Z = 7
- Total number of electrons: 7 (same number of protons)
- Period: 15 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 5 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 7 - 5 = 2
- Z eff = Z - S = 7 - 2 = 5
<u><em>7) Summary (order):</em></u>
Atom Zeff for a valence electron
- <u>Conclusion</u>: the order is Li < Be < B < N < F
Take the attached picture of a periodic table as a guide. You are finding for a solid metal. Therefore, streamline your choices by looking at elements written in black bold letters, because they are all solid. Next, if you look at the center, the legend for metals are colors in orange, yellow, flesh, lavender, pink, and cyan blue. These region would be your choices. Next, you want to find a metal that is shiny and ductile. The shiny appearance is a common characteristic of luster by materials. Ductility is the ability of a metal to stretch when under tensile stress. These properties are best exhibited by metals in the transitions metals colored in pink. Therefore, the answer to your question would be any of the metal in the pink area. Examples are Titanium, Chromium, Gold, Silver, Platinum, Tungsten, etc.
Answer:
2.173 moles of ethanol is presented in a 100.0g sample of ethanol .
Explanation:
The amount of substance that contains as many Particles as there are atoms in exactly 12g of carbon- '12 isotope is called 1 mole '= 46 u.