Answer : The temperature of liquid is, 369.9 K
Explanation :
The Clausius- Clapeyron equation is :
![\ln (\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}\times (\frac{1}{T_1}-\frac{1}{T_2})](https://tex.z-dn.net/?f=%5Cln%20%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%3D%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7BR%7D%5Ctimes%20%28%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%29)
where,
= vapor pressure of liquid at 373 K = 681 torr
= vapor pressure of liquid at normal boiling point = 760 torr
= temperature of liquid = ?
= normal boiling point of liquid = 373 K
= heat of vaporization = 40.7 kJ/mole = 40700 J/mole
R = universal constant = 8.314 J/K.mole
Now put all the given values in the above formula, we get:
![\ln (\frac{760torr}{681torr})=\frac{40700J/mole}{8.314J/K.mole}\times (\frac{1}{T_1}-\frac{1}{373K})](https://tex.z-dn.net/?f=%5Cln%20%28%5Cfrac%7B760torr%7D%7B681torr%7D%29%3D%5Cfrac%7B40700J%2Fmole%7D%7B8.314J%2FK.mole%7D%5Ctimes%20%28%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7B373K%7D%29)
![T_1=369.907K\approx 369.9K](https://tex.z-dn.net/?f=T_1%3D369.907K%5Capprox%20369.9K)
Hence, the temperature of liquid is, 369.9 K