The answer is 5 hours 45 minutes
Explanation:
Load=500N
Effort=100N
Now,
We have,
Mechanical advantage= Load / effort
= 500/100
=5
Therefore, mechanical advantage is 5.
Answer:
![[Fe^{+3}]=0.700 M](https://tex.z-dn.net/?f=%5BFe%5E%7B%2B3%7D%5D%3D0.700%20M)
![[NO_{3}^{-}]=2.10 M](https://tex.z-dn.net/?f=%5BNO_%7B3%7D%5E%7B-%7D%5D%3D2.10%20M)
Explanation:
Here, a solution of Fe(NO₃)₃ is diluted, as the total volume of the solution has increased. The formula for dilution of the compound is mathematically expressed as:

Here, C and V are the concentration and volume respectively. The numbers at the subscript denote the initial and final values. The concentration of Fe(NO₃)₃ is 1.75 M. As ferric nitrate dissociates completely in water, the initial concentration of ferric is also 1.75 M.
Solving for [Fe],
![[Fe^{+3}]=\frac{C_{1}.V_{1}}{V_{2} }](https://tex.z-dn.net/?f=%5BFe%5E%7B%2B3%7D%5D%3D%5Cfrac%7BC_%7B1%7D.V_%7B1%7D%7D%7BV_%7B2%7D%20%7D)
![[Fe^{+3}]=\frac{(1.75).(30.0)}{45.0+30.0 }](https://tex.z-dn.net/?f=%5BFe%5E%7B%2B3%7D%5D%3D%5Cfrac%7B%281.75%29.%2830.0%29%7D%7B45.0%2B30.0%20%7D)
![[Fe^{+3}]=0.700 M](https://tex.z-dn.net/?f=%5BFe%5E%7B%2B3%7D%5D%3D0.700%20M)
For [NO₃⁻],
There are three moles of nitrate is 1 mole of Fe(NO₃)₃. This means that the initial concentration of nitrate ions will be three times the concentration of ferric nitrate i.e., it will be 5.25 M.
![[NO_{3}^{-}]=\frac{C_{1}.V_{1}}{V_{2} }](https://tex.z-dn.net/?f=%5BNO_%7B3%7D%5E%7B-%7D%5D%3D%5Cfrac%7BC_%7B1%7D.V_%7B1%7D%7D%7BV_%7B2%7D%20%7D)
![[NO_{3}^{-}]=\frac{(5.25)(30.0)}{30.0+45.0 }](https://tex.z-dn.net/?f=%5BNO_%7B3%7D%5E%7B-%7D%5D%3D%5Cfrac%7B%285.25%29%2830.0%29%7D%7B30.0%2B45.0%20%7D)
![[NO_{3}^{-}]=2.10 M](https://tex.z-dn.net/?f=%5BNO_%7B3%7D%5E%7B-%7D%5D%3D2.10%20M)
Answer:
The correct answer is - They gently shake the pan causing the marbles to move back and forth.
Explanation:
When water is heated the molecules present in its liquid state start to move and vibrate faster and allows the water to expand and increase in volume. If the heat is continuously applied to the water its molecules move even faster and escape in the form of molecules of vapor to the atmosphere.
To exhibit this phenomenon by the marble and pan, Richard and Brooke should gently shake the pan causing the marbles to move back and forth which shows faster vibration and movement of molecules.
Answer:
The mass of SO2 will be equal to the sum of the mass of S and O2.
Explanation:
This can be explained by the <em>Law of Conservation of Mass</em>. This law states that mass can neither be created nor destroyed. Knowing this, we can say that the reactants of a chemical reaction must be equal to the products.
In this case, the reactants Sulfur (S) and Oxygen (O2) must equal the mass of the product Sulfur Dioxide (SO2). Therefore, the statement <em>"The mass of SO2 will be equal to the sum of the mass of S and O2" </em>is correct.