Answer:I would copy and past but that’s a lot of work just read it
Explanation:
<span>An exothermic reaction is one in which heat is released from the reagents into the ambient environment. Perhaps somewhat counterintuitively, condensation is in fact an example of such a reaction. During the process of the gas-to-liquid phase change, water goes from a higher-energy to lower-energy state of matter, and, as such, releases heat into the environment.</span>
Question 4: The first one
Question 5: The fourth one
Question 6: The first one
Question 7: The third one
Explanation:
The reaction equation will be as follows.

Hence, the expression for
is as follows.
![K_{a} = \frac{[H_{2}SO^{-}_{4}][H^{+}]}{[H_{3}AsO_{4}]}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BH_%7B2%7DSO%5E%7B-%7D_%7B4%7D%5D%5BH%5E%7B%2B%7D%5D%7D%7B%5BH_%7B3%7DAsO_%7B4%7D%5D%7D)
Let us assume that the concentration of both
and
is x.

x = 0.01118034
This means that the concentration of
is 0.01118034.
Since, we know that the relation between pH and concentration of hydrogen ions is as follows.
pH = ![-log [H^{+}]](https://tex.z-dn.net/?f=-log%20%5BH%5E%7B%2B%7D%5D)
= 
= 1.958
Thus, we can conclude that the pH of a 0.500 M solution of arsenic acid is 1.958.
<span>The oxygen atom accepts the proton. The oxidation number of O is -2, meaning that there are two unshared electrons in the valence shell; In the ClO- ion, one of these is shared with the Cl- ion, leaving an unshared electron on the oxygen atom, which is what the hydrogen atom shares its electron with, becoming the proton accepted by the O atom.</span>