Answer: The scientific method is an empirical method of acquiring knowledge that has characterized the development of science since at least the 17th century. It involves careful observation, applying rigorous skepticism about what is observed, given that cognitive assumptions can distort how one interprets the observation.
Explanation:
Hope this helps. :)
We write DE = q+w, where DE is the internal energy change and q and w are heat and work, respectively.
(b)Under what conditions will the quantities q and w be negative numbers?
q is negative when heat flows from the system to the surroundings, and w is negative when the system does work on the surroundings.
As an aside: In applying the first law, do we need to measure the internal energy of a system? Explain.
The absolute internal energy of a system cannot be measured, at least in any practical sense. The internal energy encompasses the kinetic energy of all moving particles in the system, including subatomic particles, as well as the electrostatic potential energies between all these particles. We can measure the change in internal energy (DE) as the result of a chemical or physical change, but we cannot determine the absolute internal energy of either the initial or the final state. The first law allows us to calculate the change in internal energy during a transformation by calculating the heat and work exchanged between the system and its surroundings.
Answer: "physical change" .
________________________________________________________
This would be a "physical change" . ________________________________________________________
<u>Note</u>: This would change from a "solid" to a "liquid" / mere rearrangement of molecules/ NOT a new chemical substance—hence, a "physical change".
________________________________________________________
Mass=volume x density
if we have mass and density we can calculate volume using the formula: volume=mass/density
volume of the displaced water = 600g/19.3g/cm3
volume = 31.09cm3
Answer:
mass P4 = 35.998 g
Explanation:
∴ STP: P = 1 atm; T = 298 K
∴ V O2= 35.5 L
⇒ nO2 = P.V / R.T
∴ R = 0.082 atm.L/K.mol
⇒ nO2 = ((1 atm)×(35.5L))/((0.082 atm.L/K.mol)(298K))
⇒ nO2 = 1.453 mol O2
⇒ mol P4 = (1.453 molO2)×(mol P4/ 5molO2) = 0.2906 mol P4
∴ Mw P4 = 123.895 g/mol
⇒ mass P4 = (0.2906 mol P4)×(123.895 g/mol) = 35.998 g P4