The answer is 14.8 hoped this helped
Answer:
1 mol
Explanation:
Using the general gas law equation as follows:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
According to the provided information in the question;
V = 22.4L
T = 273K
P = 1 atm
R = 0.0821 Latm/molK
n = ?
Using PV = nRT
n = PV/RT
n = (1 × 22.4) ÷ (0.0821 × 273)
n = 22.4 ÷ 22.4
n = 1mol
<h2>Answer : Option D) Heterogeneous mixture</h2><h3>Explanation : </h3>
A mixture in which particles are not evenly distributed and particles keep their unique properties are called as heterogeneous mixture.
Usually, in heterogeneous mixture the substances are not evenly distributed and they can be easily separated through any physical methods. Also the components retains their original/unique properties in the mixture. It usually contains various particles from different substances that are not uniformly distributed throughout the mixture.
Answer:
The term temperature refers to the average amount of heat or the motion energy of particles in a substance. It measures the hotness and coldness of a substance. If an object has particles that move very fast, then it has a high temperature.
Temperature is different from the term thermal energy. Thermal energy is the total motion energy of particles in a substance. The movement of particles is always dependent on their number. If an object contains many particles, then it has greater thermal energy.
On the other hand, Heat is the energy that is involved in the movement of particles between objects that have different temperatures, particularly from an object with a high temperature to an object with a low temperature.
Answer: a) 90.5g
b) 33.6 L
Explanation:-
Molar mass of tyrosine
= 181 g/mol
According to Avogadro's law, 1 mole of every substance weighs equal to its molar mass.
1 mole of tyrosine
weighs = 181 g/mol
0.5 moles of tyrosine
weigh 
b) According to Avogadro's law, 1 mole of an ideal gas occupies 22.4 Liters at Standard conditions of temperature and pressure (STP).
1 mole of gas at STP occupy = 22.4 L
1.5 moles of gas at STP occupy =