.
<h3>Explanation</h3>
The Stefan-Boltzmann Law gives the energy radiation <em>per unit area</em> of a black body:

where,
the total power emitted,
the surface area of the body,
the Stefan-Boltzmann Constant, and
the temperature of the body in degrees Kelvins.
.
.
.
Keep as many significant figures in
as possible. The error will be large when
is raised to the power of four. Also, the real value will be much smaller than
since the emittance of a human body is much smaller than assumed.
Answer:
2.98 m/s^2
Explanation:
I have done this before and it was a question on my physics test
Because it's the planet in our solar system with the shortest,
fastest orbit around the sun ... only 88 Earth days.
The people who named it didn't know that ... they still thought that
the sun and all the planets revolve around the Earth. But they did
see it zip from one side of the sun to the other, faster than any other
planet ... the result of having the shortest, fastest orbit of any planet.
Stars having less mass collapses early than those with more mass. This can be explained by Einstein's equation E=mc².
According to this equation, mass of stars is converted into light due to thermonuclear reactions occuring in the core of star which acts as engine of the stars. This thermonuclear reactions keeps star alive. Thermonuclear reactions occurs slowly in massive stars hence massive stars live more than light stars.
Answer:Explained below.
Explanation:
Uranus rings is made up of jet black, coal-like particles in small bands, making them difficult to perceive from Earth.This indicates that they are probably composed of a mixture of the ice and a dark material. The nature of material is dismal, but it might be some organic compounds greatly darkened by the charged particle irradiation from the Uranian magnetosphere. Rings were discovered by using a infrared telescope throughout the occultation of a star as Uranus passed in front of it. The light from the star dimmed many times before it was obstructed by the disk of Uranus and subsequently, showing the presence of various distinct rings.