The answer is force
sorry if i’m wrong
Answer:
Bond energy of carbon-fluorine bond is 485 kJ/mol
Explanation:
Enthalpy change for a reaction, is given as:
![\Delta H_{rxn}=\sum [n_{i}\times (E_{bond})_{i}]-\sum [n_{j}\times (E_{bond})_{j}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn_%7Bi%7D%5Ctimes%20%28E_%7Bbond%7D%29_%7Bi%7D%5D-%5Csum%20%5Bn_%7Bj%7D%5Ctimes%20%28E_%7Bbond%7D%29_%7Bj%7D%5D)
Where
and
represents average bond energy in breaking "i" th bond and forming "j" th bond respectively.
and
are number of moles of bond break and form respectively.
In this reaction, one mol of C=C, four moles of C-H and one mol of F-F bonds are broken. One mol of C-C bond, four moles of C-H bonds and two moles of C-F bonds are formed
So, 
or, 
or, 
So bond energy of carbon-fluorine bond is 485 kJ/mol
Initial Conditions:
Volume= v1= 417 cm³
Temperature= T1 = 278 K
Final Conditions:
Temperature= T2 = 231K
Volume = v2 =?
Use the general gas equation;
P1*v1/T1 = P2*v2/T2
As, the temperature is constant;
So,
v1/T1 = v2/T2
417/278 = v2/231
v2= 346.5 cm³
Answer:
I think its b
Explanation:
but I wouldn't depend on this answer
Answer:
2.1 kg of water
Explanation:
Step 1: Given data
- Moles of lithium bromide (solute): 4.3 moles
- Molality of the solution (m): 2.05 m (2.05 mol/kg)
- Mass of water (solvent): ?
Step 2: Calculate the mass of water required
Molality is equal to the moles of solute divided by the kilograms of solvent.
m = moles of solute/kilograms of solvent
kilograms of solvent = moles of solute/m
kilograms of solvent = 4.3 mol /(2.05 mol/kg) = 2.1 kg