Answer:

Explanation:
<h3><u>Given data:</u></h3>
Acceleration = a = 0.4 m/s²
Initial Speed =
= 20 m/s
Final Speed =
= 40 m/s
<h3><u>Required:</u></h3>
Time = t = ?
<h3><u>Formula:</u></h3>

<h3><u>Solution:</u></h3>
Rearranging formula for t
![\displaystyle t =\frac{V_f-V_i}{a} \\\\t = \frac{40-20}{0.4} \\\\t = \frac{20}{0.4} \\\\\boxed{t = 50 \ seconds}\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20t%20%3D%5Cfrac%7BV_f-V_i%7D%7Ba%7D%20%5C%5C%5C%5Ct%20%3D%20%5Cfrac%7B40-20%7D%7B0.4%7D%20%5C%5C%5C%5Ct%20%3D%20%5Cfrac%7B20%7D%7B0.4%7D%20%5C%5C%5C%5C%5Cboxed%7Bt%20%3D%2050%20%5C%20seconds%7D%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
The only reactants are Nitrogen and Oxygen and the only product is dinitrogen pentoxide. Following the law of conservation of mass, the total amount of reactants must equal the total amount of products. Thus, the total mass of dinitrogen pentoxide:
35 + 48
= 83 grams
Electron transitions from higher to lower energy levels cause emission of energy in the form of electromagnetic waves, each with their own specific wavelength. Because the energy levels of elements are quantized, each transition has a specific energy difference. The collection of these transitions makes up the emission spectrum and each spectrum is unique to a specific element, allowing identification.
Answer: The value of equilibrium constant for new reaction is
Explanation:
The given chemical equation follows:
The equilibrium constant for the above equation is 
We need to calculate the equilibrium constant for the equation of 3 times of the above chemical equation, which is:
The equilibrium constant for this reaction will be the cube of the initial reaction.
If the equation is multiplied by a factor of '3', the equilibrium constant of the new reaction will be the cube of the equilibrium constant of initial reaction.
The value of equilibrium constant for reverse reaction is:
Hence, the value of equilibrium constant for new reaction is
A. When the substance is in its gaseous state.
<u>Explanation:</u>
When a substance is expanding against its constant volume and pressure, its temperature increases except when the substance is in gaseous state and not in liquid or solid state. So the internal energy increase in the system not only increases and maintaining the volume and pressure of the system remains constant in its gaseous phase. In the first law of Thermodynamics, it is used specifically that to especially in the case of gaseous system.
<u></u>