Answer:
Option B
Step-by-step explanation:
we know that
A line perpendicular to the x-axis is a line parallel to the y-axis
so
the equation of the line is of the form x=(+/-)a
The slope of the line is undefined
where
a is a real number
therefore
x=6 is a line perpendicular to the x-axis
Answer:1/16
Step-by-step explanation:
1/4x1/2x1/2
1. how much to tip
2. how much interest is needed for a loan
3. figuring out how much sales tax
Answer:
![x_1 = \frac{3}{2} + \frac{1}{2}(\sqrt{47})i\\\\x_2 = \frac{3}{2} - \frac{1}{2}(\sqrt{47})i\\\\](https://tex.z-dn.net/?f=x_1%20%3D%20%5Cfrac%7B3%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%28%5Csqrt%7B47%7D%29i%5C%5C%5C%5Cx_2%20%3D%20%5Cfrac%7B3%7D%7B2%7D%20-%20%5Cfrac%7B1%7D%7B2%7D%28%5Csqrt%7B47%7D%29i%5C%5C%5C%5C)
Step-by-step explanation:
In this problem we have the equation of the following quadratic equation and we want to solve it using the method of square completion:
![x ^ 2 -3x +14 = 0](https://tex.z-dn.net/?f=x%20%5E%202%20-3x%20%2B14%20%3D%200)
The steps are shown below:
For any equation of the form: ![ax ^ 2 + bx + c = 0](https://tex.z-dn.net/?f=ax%20%5E%202%20%2B%20bx%20%2B%20c%20%3D%200)
1. If the coefficient a is different from 1, then take a as a common factor.
In this case
.
Then we go directly to step 2
2. Take the coefficient b that accompanies the variable x. In this case the coefficient is -3. Then, divide by 2 and the result squared it.
We have:
![\frac{-3}{2} = -\frac{3}{2}\\\\(-\frac{3}{2}) ^ 2 = (\frac{9}{4})](https://tex.z-dn.net/?f=%5Cfrac%7B-3%7D%7B2%7D%20%3D%20-%5Cfrac%7B3%7D%7B2%7D%5C%5C%5C%5C%28-%5Cfrac%7B3%7D%7B2%7D%29%20%5E%202%20%3D%20%28%5Cfrac%7B9%7D%7B4%7D%29)
3. Add the term obtained in the previous step on both sides of equality:
![x ^ 2 -3x + (\frac{9}{4}) = -14 + (\frac{9}{4})](https://tex.z-dn.net/?f=x%20%5E%202%20-3x%20%2B%20%28%5Cfrac%7B9%7D%7B4%7D%29%20%3D%20-14%20%2B%20%28%5Cfrac%7B9%7D%7B4%7D%29)
4. Factor the resulting expression, and you will get:
![(x -\frac{3}{2}) ^ 2 = -(\frac{47}{4})](https://tex.z-dn.net/?f=%28x%20-%5Cfrac%7B3%7D%7B2%7D%29%20%5E%202%20%3D%20-%28%5Cfrac%7B47%7D%7B4%7D%29)
Now solve the equation:
Note that the term
is always > 0 therefore it can not be equal to ![-(\frac{47}{4})](https://tex.z-dn.net/?f=-%28%5Cfrac%7B47%7D%7B4%7D%29)
The equation has no solution in real numbers.
In the same way we can find the complex roots:
![(x -\frac{3}{2}) ^ 2 = -(\frac{47}{4})\\\\x -\frac{3}{2} = \±\sqrt{-(\frac{47}{4})}\\\\x = \frac{3}{2} \±\frac{1}{2}\sqrt{-47}\\\\x = \frac{3}{2} \±\frac{1}{2}(\sqrt{47})i\\\\x_1 = \frac{3}{2} + \frac{1}{2}(\sqrt{47})i\\\\x_2 = \frac{3}{2} - \frac{1}{2}(\sqrt{47})i\\\\](https://tex.z-dn.net/?f=%28x%20-%5Cfrac%7B3%7D%7B2%7D%29%20%5E%202%20%3D%20-%28%5Cfrac%7B47%7D%7B4%7D%29%5C%5C%5C%5Cx%20-%5Cfrac%7B3%7D%7B2%7D%20%3D%20%5C%C2%B1%5Csqrt%7B-%28%5Cfrac%7B47%7D%7B4%7D%29%7D%5C%5C%5C%5Cx%20%20%3D%20%5Cfrac%7B3%7D%7B2%7D%20%5C%C2%B1%5Cfrac%7B1%7D%7B2%7D%5Csqrt%7B-47%7D%5C%5C%5C%5Cx%20%3D%20%5Cfrac%7B3%7D%7B2%7D%20%5C%C2%B1%5Cfrac%7B1%7D%7B2%7D%28%5Csqrt%7B47%7D%29i%5C%5C%5C%5Cx_1%20%3D%20%5Cfrac%7B3%7D%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%28%5Csqrt%7B47%7D%29i%5C%5C%5C%5Cx_2%20%3D%20%5Cfrac%7B3%7D%7B2%7D%20-%20%5Cfrac%7B1%7D%7B2%7D%28%5Csqrt%7B47%7D%29i%5C%5C%5C%5C)