Answer:
- The distance between the charges is 5,335.026 m
Explanation:
To obtain the forces between the particles, we can use Coulomb's Law in scalar form, this is, the force between the particles will be:
where k is Coulomb's constant, and are the charges and d is the distance between the charges.
Working a little the equation, we can take:
And this equation will give us the distance between the charges. Taking the values of the problem
(the force has a minus sign, as its attractive)
And this is the distance between the charges.
Answer:
See the answer below
Explanation:
1. Speed is calculated as the ratio of distance and time. Hence, Jame's speed can be calculated as:
400/5 km/hr = 80 km/hr
The unit for the speed would be km/hr. This can also be converted to m/s:
80 km = 80,000 m
1 hr = 3,600 s
80 km/hr = 80,000/3600 m/s = 22.22 m/s
2. Since James drove 400 km in 5 hours, the distance he drove is 400 km.
3. The time it took for James to get there is 5 hours.
Answer:
different number of mass numbers.
Explanation:
isotopes are atoms of the same element having the same atomic number but different mass numbers due to different number of neutrons.
Answer:
<h3>2,321.62Joules</h3>
Explanation:
The formula for calculating workdone is expressed as;
Workdone = Force * Distance
Get the force
F = nR
n is the coefficient of friction = 0.5
R is the reaction = mg
R = 46 ( 9.8)
R = 450.8N
F = 0.5 * 450.8
F = 225.4N
Distance = 10.3m
Get the workdone
Workdone = 225.4 * 10.3
Workdone = 2,321.62Joules
<em>Hence the amount of work done is 2,321.62Joules</em>
Answer: C. Metal transfers heat away from the skin by conduction, creating the sensation of coolness.
Explanation: The skin releases heat into the metal bowl since there is a difference in temperature between the two objects. So heat is taken away from the hand abd transfers into the metal bowl by conduction creating a cooler sensation.