1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katrin [286]
3 years ago
6

Nonrenewable resources are natural resources that are limited in supply and cannot be replaced as quickly as they are used up.

Physics
1 answer:
zysi [14]3 years ago
8 0

Answer:

True

Explanation:

Nonrenewable resources ARE limited in supply. They don't get replaced at the speed they get made. For example: we pump crude oil from the ground at a rate that makes it impossible for crude oil to be replaced. Crude oil takes millions of years to produce

You might be interested in
How far apart would you have to place the poles of a 1. 5 v battery to achieve the same electric field?
Zarrin [17]

To place the poles of a 1. 5 v battery to achieve the same electric field is 1.5×10−2 m

The potential difference is related to the electric field by:

∆V=Ed

where,

∆V is the potential difference

E is the electric field

d is the distance

what is potential difference?

The difference in potential between two points that represents the work involved or the energy released in the transfer of a unit quantity of electricity from one point to the other.

We want to know the distance the detectors have to be placed in order to achieve an electric field of

E=1v/cm=100v/cm

when connected to a battery with potential difference

∆v=1.5v

Solving the equation,we find

d =  \frac{ \:Δv}{e}

=  \frac{1.5v}{100v/m}

= 1.5 \times 10 {}^{ - 2} m

learn more about potential difference from here: brainly.com/question/28166044

#SPJ4

6 0
11 months ago
An ocean thermal energy conversion system is being proposed for electric power generation. Such a system is based on the standar
defon

Answer:

Explanation:

Dear Student, this question is incomplete, and to attempt this question, we have attached the complete copy of the question in the image below. Please, Kindly refer to it when going through the solution to the question.

To objective is to find the:

(i) required heat exchanger area.

(ii) flow rate to be maintained in the evaporator.

Given that:

water temperature = 300 K

At a reasonable depth, the water is cold and its temperature = 280 K

The power output W = 2 MW

Efficiency \zeta = 3%

where;

\zeta = \dfrac{W_{out}}{Q_{supplied }}

Q_{supplied } = \dfrac{2}{0.03} \ MW

Q_{supplied } = 66.66 \ MW

However, from the evaporator, the heat transfer Q can be determined by using the formula:

Q = UA(L MTD)

where;

LMTD = \dfrac{\Delta T_1 - \Delta T_2}{In (\dfrac{\Delta T_1}{\Delta T_2} )}

Also;

\Delta T_1 = T_{h_{in}}- T_{c_{out}} \\ \\ \Delta T_1 = 300 -290 \\ \\ \Delta T_1 = 10 \ K

\Delta T_2 = T_{h_{in}}- T_{c_{out}} \\ \\ \Delta T_2 = 292 -290 \\ \\ \Delta T_2 = 2\ K

LMTD = \dfrac{10 -2}{In (\dfrac{10}{2} )}

LMTD = \dfrac{8}{In (5)}

LMTD = 4.97

Thus, the required heat exchanger area A is calculated by using the formula:

Q_H = UA (LMTD)

where;

U = overall heat coefficient given as 1200 W/m².K

66.667 \times 10^6 = 1200 \times A \times 4.97 \\ \\  A= \dfrac{66.667 \times 10^6}{1200 \times 4.97} \\ \\  \mathbf{A = 11178.236 \ m^2}

The mass flow rate:

Q_{H} = mC_p(T_{in} -T_{out} )  \\ \\  66.667 \times 10^6= m \times 4.18 (300 -292) \\ \\ m = \dfrac{  66.667 \times 10^6}{4.18 \times 8} \\ \\  \mathbf{m = 1993630.383 \ kg/s}

3 0
3 years ago
A real heat engine operates between temperatures tc and th. during a certain time, an amount qc of heat is released to the cold
tino4ka555 [31]

q_{c} = Heat released to cold reservoir

q_{h} = Heat released to hot reservoir

W_{max} = maximum amount of work

t_{c} = temperature of cold reservoir

t_{h} = temperature of hot reservoir

we know that

\frac{q_{c}}{q_{h}}=\frac{t_{c}}{t_{h}}

q_{h} = (\frac{t_{h}}{t_{c}})q_{c}                                eq-1

maximum work is given as

W_{max} = q_{h} - q_{c}

using eq-1

W_{max} =  (\frac{t_{h}}{t_{c}})q_{c} - q_{c}



6 0
3 years ago
NASA has asked your team of rocket scientists about the feasibility of a new satellite launcher that will save rocket fuel. NASA
kkurt [141]

Answer:

The answer is "q=0.0945\,C".

Explanation:

Its minimum velocity energy is provided whenever the satellite(charge 4 q) becomes 15 m far below the square center generated by the electrode (charge q).

U_i=\frac{1}{4\pi\epsilon_0} \times \frac{4\times4q^2}{\sqrt{(15)^2+(5/\sqrt2)^2}}

It's ultimate energy capacity whenever the satellite is now in the middle of the electric squares:

U_f=\frac{1}{4\pi\epsilon_0}\ \times \frac{4\times4q^2}{( \frac{5}{\sqrt{2}})}

Potential energy shifts:

= U_f -U_i \\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{\sqrt{(15)^2+( \frac{5}{\sqrt{2})^2)}}\right ) \\\\   =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ 15 +( \frac{5}{2})}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ (\frac{30+5}{2})}}\right )\\\\

=\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{ (\frac{35}{2})}}\right )\\\\=\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{\sqrt2}{5}-\frac{1}{17.5}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{ 24.74- 5 }{87.5}}\right )\\\\ =\frac{16q^2}{4\pi\epsilon_0}\left ( \frac{ 19.74- 5 }{87.5}}\right )\\\\ =\frac{4q^2}{\pi\epsilon_0}\left ( 0.2256 }\right )\\\\= \frac{0.28 \times q^2}{ \epsilon_0}\\\\=q^2\times31.35 \times10^9\,J

Now that's the energy necessary to lift a satellite of 100 kg to 300 km across the surface of the earth.

=\frac{GMm}{R}-\frac{GMm}{R+h} \\\\=(6.67\times10^{-11}\times6.0\times10^{24}\times100)\left(\frac{1}{6400\times1000}-\frac{1}{6700\times1000} \right ) \\\\ =(6.67\times10^{-11}\times6.0\times10^{26})\left(\frac{1}{64\times10^{5}}-\frac{1}{67\times10^{5}} \right ) \\\\=(6.67\times6.0\times10^{15})\left(\frac{67 \times 10^{5} - 64 \times 10^{5}  }{ 4,228 \times10^{5}} \right ) \\\\

=( 40.02\times10^{15})\left(\frac{3 \times 10^{5}}{ 4,228 \times10^{5}} \right ) \\\\ =40.02 \times10^{15} \times 0.0007 \\\\

\\\\ =0.02799\times10^{10}\,J \\\\= q^2\times31.35\times10^{9} \\\\ =0.02799\times10^{10} \\\\q=0.0945\,C

This satellite is transmitted by it system at a height of 300 km and not in orbit, any other mechanism is required to bring the satellite into space.

6 0
3 years ago
Yoyoyoyoyoyoyoyoyoyoyoyoyoyoyoy
Vikentia [17]

Answer:

Yoyoyoyoyooyoyy

Explanation:

Yoyoyoyoyoyoyoyoyooy

4 0
3 years ago
Read 2 more answers
Other questions:
  • A 63.2-kg climber finds herself dangling over the edge of a cliff. Fortunately, she’s connected by a rope of negligible mass to
    9·1 answer
  • An astronaut is in equilibrium when he is positioned 140 km from the center of asteroid C and 581 km from the center of asteroid
    5·1 answer
  • A clever inventor has created a device that can launch water balloons with an initial speed of 85.0 m/s. Her goal is to pass a b
    8·1 answer
  • Consider an airplane modeled after the twin-engine Beechcraft Queen Air executive transport. The airplane has the following char
    8·1 answer
  • A particle of mass m moves along the x axis under the influence of a force given by F(x)=(3+2x)i. It starts from rest from the p
    9·1 answer
  • What is the measure of the change in velocity during the period of time?
    14·1 answer
  • If you run at an average speed of 10 mi/h, how long will it take
    14·1 answer
  • If you increase the frequency of a sound wave four times, what will happen to its speed?
    7·1 answer
  • Isaac Newton discovered the three laws of motion. Which example best illustrates Newton's third law of motion, which describes a
    11·1 answer
  • According to max weber, flaunting of one’s wealth to show one’s status is called?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!