Answer:
a.
b.
c.
d. The angular acceleration when sitting in the middle is larger.
Explanation:
a. The magnitude of the torque is given by
, being r the radius, F the force aplied and
the angle between the vector force and the vector radius. Since
and so
.
b. Since the relation
hols, being I the moment of inertia, the angular acceleration can be calculated by
. Since we have already calculated the torque, all left is calculate the moment of inertia. The moment of inertia of a solid disk rotating about an axis that passes through its center is
, being M the mass of the disk. If we assume that a person has a punctual mass, the moment of inertia of a person would be given by
, being
the mass of the person and
the distance from the person to the center. Given all of this, we have
.
c. Similar equation to b, but changing
, so
.
d. The angular acceleration when sitting in the middle is larger because the moment of inertia of the person is smaller, meaning that the person has less inertia to rotate.
An advertisement for an all-terrain vehicle (ATV) claims that the ATV can climb inclined slopes of 35°. The minimum coefficient of static friction needed for this claim to be possible is 0.7
In an inclined plane, the coefficient of static friction is the angle at which an object slide over another.
As the angle rises, the gravitational force component surpasses the static friction force, as such, the object begins to slide.
Using the Newton second law;




N = mg cos θ
Equating both force component together, we have:



From trigonometry rule:

∴



Therefore, we can conclude that the minimum coefficient of static friction needed for this claim to be possible is 0.7
Learn more about static friction here:
brainly.com/question/24882156?referrer=searchResults
Explanation:
By using v=( f )x( lambda )
v= 45 s^-1 x 3 m
Therefore v = 135 ms^-1