Answer:
f(x)=-18x^2
Step-by-step explanation:
Given:
1+Integral(f(t)/t^6, t=a..x)=6x^-3
Let's get rid of integral by differentiating both sides.
Using fundamental of calculus and power rule(integration):
0+f(x)/x^6=-18x^-4
Additive Identity property applied:
f(x)/x^6=-18x^-4
Multiply both sides by x^6:
f(x)=-18x^-4×x^6
Power rule (exponents) applied"
f(x)=-18x^2
Check:
1+Integral(-18t^2/t^6, t=a..x)=6x^-3
1+Integral(-18t^-4, t=a..x)=6x^-3
1+(-18t^-3/-3, t=a..x)=6x^-3
1+(6t^-3, t=a..x)=6x^-3
That looks great since those powers are the same on both side after integration.
Plug in limits:
1+(6x^-3-6a^-3)=6x^-3
We need 1-6a^-3=0 so that the equation holds true for all x.
Subtract 1 on both sides:
-6a^-3=-1
Divide both sides by-6:
a^-3=1/6
Raise both sides to -1/3 power:
a=(1/6)^(-1/3)
Negative exponent just refers to reciprocal of our base:
a=6^(1/3)
<span>Are the lines in the diagram perpendicular, parallel, skew, or none of these?
l and m: neither
l and m intersect, but are not perpendicular.
l and n: skew
l and n are not parallel, but they do not intersect because they are not on the same plane.
m and n: perpendicular.
m and n intersect at a right angle</span>
Answer:
Step-by-step explanation:
total is 240 then the bigger areas are 60* so S is 40*
Answer:
Step-by-step explanation:
Yes
Answer:
-6
Step-by-step explanation:
-3 + (-4) 4 + (-3) is -6 I hope that helps because that what I got