1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kryger [21]
2 years ago
6

A and B are postive integers such that 1/a + 1/b +1/ab = 1. Find ab

Mathematics
1 answer:
Kitty [74]2 years ago
4 0

Answer: ab =6

have:

\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=1\\\\=>\frac{b}{ab}+\frac{a}{ab}+\frac{1}{ab}=1\\\\\frac{a+b+1}{ab}=1

=> a + b + 1 = ab

⇔ a + b + 1 - ab = 0

⇔ b - 1 - a(b - 1) + 2 = 0

⇔ (b - 1)(1 - a) = -2

because a and b are postive integers => (b - 1) and (1 - a) also are integers

=> (b - 1) ∈ {-1; 1; 2; -2;}

(1 -a) ∈  {-1; 1; 2; -2;}

because (b -1).(1-a) = -2 => we have the table:

b - 1        -1             1              2             -2

1 - a         2            -2            -1              1

a              -1            3             2              0

b              0            2             3              -1

a.b            0           6             6               0

because a and b  are postive integers

=> (a;b) = (3;2) or (a;b) = (2;3)

=> ab = 6

Step-by-step explanation:

You might be interested in
Write an equation of the line that passes through (4,-6) and is parallel to the line y=-3x-9
murzikaleks [220]

Answer:

y - 7 = 3(x - 3)

y - 7 = 3x - 9

y = 3x - 2

Step-by-step explanation:

Hope this helped you!

5 0
3 years ago
A store is having a sale to celebrate president's Day. Every item in the store is advertised as one fifth off the original price
olya-2409 [2.1K]
1/5th off = 20% off

80% = $140
1% = $1.75
100% = $175

Answer is $175
6 0
3 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
2. Find the theoretical probability of not rolling a 4.
mezya [45]

Answer:If a die is rolled once, determine the probability of rolling a 4: Rolling a 4 is an event with 1 favorable outcome (a roll of 4) and the total number of possible outcomes is 6 (a roll of 1, 2, 3, 4, 5, or 6). Thus, the probability of rolling a 4 is 1/6.

If a die is rolled once, determine the probability of rolling at least a 4: Rolling at least 4 is an event with 3 favorable outcomes (a roll of 4, 5, or 6) and the total number of possible outcomes is again 6. Thus, the probability of rolling at least a 4 is 3/6 = 1/2

Step-by-step explanation:For example, when a die is rolled, the possible outcomes are 1, 2, 3, 4, 5, and 6. In mathematical language, an event is a set of outcomes, which describe what outcomes correspond to the "event" happening. For instance, "rolling an even number" is an event that corresponds to the set of outcomes {2, 4, 6}. The probability of an event, like rolling an even number, is the number of outcomes that constitute the event divided by the total number of possible outcomes. We call the outcomes in an event its "favorable outcomes".

8 0
3 years ago
Describe the function over each part of its domain. State whether it is constant, increasing, or decreasing, and state the slope
vivado [14]

The function is illustrated below based on the information.

<h3>How to describe the function?</h3>

When x <= 8000

The cost remains constant at 0.35 when x increases from 0 to 8000. The slope of the cost function over this part is 0

When 8000 < x <= 20000

The cost remains constant at 0.75 when x increases from 8000 to 20000 and the slope of the cost function over this part is 0.

Learn more about functions on:

brainly.com/question/25638609

#SPJ1

5 0
1 year ago
Other questions:
  • Margie is practicing for an upcoming tennis tournament. Her first serve is good 20 out of 30 times on average. Margie wants to k
    10·2 answers
  • The sum of 18 and twice a number use n to rep<br> Repesent unknown number
    15·2 answers
  • What is 85,90,75,85,95<br> Median:<br> Mean:<br> Mode:<br> Range:
    10·1 answer
  • Liam sarah and Emily share some money in the ratio 2:3:7 Emily got £80 more than liam how much money did sarah get
    12·1 answer
  • Help someone please ASAP
    9·1 answer
  • Write as an equation: 1/3 of a shipment of books weights 28 pounds.
    5·1 answer
  • Which of the following is required by k-means clustering ? a. defined distance metric b. number of clusters c. initial guess of
    7·1 answer
  • Can someone help my devil of a brother number 2?
    14·1 answer
  • What is the determinant of the coefficient matrix of the system 9x+ Oy + 5z -
    5·1 answer
  • Suppose a random sample of 40 students from a university were asked their ages. The table below gives a summary of the reported
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!