Answer:
The strongest force that exists between molecules of Ammonia is <em>Hydrogen Bonding</em>.
Explanation:
Hydrogen Bond Interactions are those interactions which are formed between a partial positive hydrogen atom bonded directly to most electronegative atoms (i.e. F, O and N) of one molecule interacts with the partial negative most electronegative atom of another molecule.
Hence, in ammonia the nitrogen atom being more electronegative element than Hydrogen will be having partial negative charge and making the hydrogen atom partial positive. Therefore, the attraction between these partials charges will be the main force of interaction between ammonia molecules.
Other than Hydrogen bonding interactions ammonia will also experience dipole-dipole attraction and London dispersion forces.
Answer:
1 A
3 main types of bond are
Ionic bond ( formed due to complete transfer of electron between atoms(
Covalent bond ( formed by mutual sharing of electron)
Metalic bond ( present in the metals due to mobile electrons)
1 B bond in CaO is ionic bond formation in attached image
1 C hydrogen bond with nitrogen is covelent NH3 ammonia is formed because a bond between two non metals is expected to be covalent
More their electronegativity difference between hydrogen and nitrogen is less than 1.7 that makes it covalent
Explanation:
Answer:
0.6 moles of CaO will produced.
Explanation:
Given data:
Mass of calcium = 23.9 g
Moles of CaO produced = ?
Solution:
Chemical equation:
2Ca + O₂ → 2CaO
Number of moles of calcium:
Number of moles = mass/ molar mass
Number of moles = 23.9 g / 40 g/mol
Number of moles = 0.6 mol
Now we will compare the moles of calcium and CaO.
Ca : CaO
2 : 2
0.6 : 0.6
0.6 moles of CaO will produced.
When oxygen has an electronegativity of 3.5, and carbon has an electronegativity of 2.5, then the oxygen atom would have a slightly negative charge. The oxygen atom in the carbon monoxide molecule would pull more electrons to its side since it has higher electronegativity making it slightly negative and the carbon would have a slightly positive charge as it would contain less electrons. This results to the formation of a polar molecule. A polar molecule is made when the molecule contains a slightly positive end and a slightly negative end. It would have a net dipole which is a result of the partial opposing charges in the molecule.
Molarity = (Mass/ molar mass) x (1/ volume of solution in Litres)
Mass = Molarity x molar mass x volume of solution in Litres
Molarity of Tris = 100 mM = 0.1 M
volume of Tris sol. = 100 mL = 0.1 L
molar mass of Tris = 121.1 g/mol
Hence,
mass of Tris = Molarity of Tris x molar mass ofTris x volume of Tris solution
= 0.1 M x 121.1 g/mol x 0.1 L
= 1.211 g
mass of Tris = 1.211 g