Answer:
0.00500M of Na₂C₂O₄
Explanation:
<em>When are dissolved in 150 mL of 1.0 M H2SO4.</em>
<em />
We can solve this problem finding molarity of sodium oxalate: That is, moles of Na2C2O4 per liter of solution. Thus, we need to convert the 0.1005g to moles using molar mass of sodium oxalate (134g/mol) and dividing in the 0.150L of the solution:
0.1005g * (1mol / 134g) = 7.5x10⁻⁴ moles of Na₂C₂O₄
In 0.150L:
7.5x10⁻⁴ moles of Na₂C₂O₄ / 0.150L =
<h3>0.00500M of Na₂C₂O₄</h3>
<h3>
Answer:</h3>
5.2 mol H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 6HCl + Fe₂O₃ → 2FeCl₃ + 3H₂O
[Given] 10.4 mol HCl
<u>Step 2: Identify Conversions</u>
[RxN] 6 mol HCl = 3 mol H₂O
<u>Step 3: Stoichiometry</u>
- Set up:

- Multiply/Divide:

Volume of a rectangular block= 2.30x4.01x1.82=16.78cm3
Mass of the rectangular block= 25.71 g
Density of the block will be = 25.71/16.78=1.53 g/cm3
So the
ANSWER IS 1.53 g/cm3 density
The maximum wavelength that can break a Cl-Cl bond is 494 nm.
<em>Energy to break 1 Cl-Cl bond
</em>
Energy = (242 kJ/1 mol) × (1000 J/1 kJ) × (1 mol/6.022 × 10²³ bonds)
= 4.019 × 10⁻¹⁹ J/bond
<em>Wavelength of photon
</em>
<em>E</em> = h<em>f</em> = (h<em>c</em>)/λ
λ = (h<em>c</em>)/E = (6.626 × 10⁻³⁴ J × 2.998 × 10⁸ m·s⁻¹)/(4.019 × 10⁻¹⁹ J) = 4.94 × 10⁻⁷ m = 494 nm