Answer:

Step-by-step explanation:
To find the average rate of change of a function over a given interval, basically you need to find the slope. The mathematical definition of the slope is very similar to the one we use every day. In mathematics, the slope is the relationship between the vertical and horizontal changes between two points on a surface or a line. In this sense, the slope can be found using the following expression:

So, the average rate of change of:

Over the interval 
Is:


Therefore, the average rate of change of this function over that interval is 3.
Answer:
No.
Step-by-step explanation:
The solution x = 0 means that the value 0 satisfies the equation, so there is a solution. “No solution” means that there is no value, not even 0, which would satisfy the equation.
It would shift up, that is the anwser
<u>Answer</u>:- No.
<u>Explanation</u> :-
<u>Substitute these numbers in pythagoras theorem to check if the set of numbers is a pythagorean triplet.</u>
<u>Pythagoras theorem</u> :- sq. of hypotenuse (longest side) is equal to the sum of sq.s of other two sides.
<u>Here</u>,
hypotenuse = 12 (as it is the longest side)
and other two sides are 6 and 9.
----> 6^2 + 9^2 = 12^2
----> 36 + 81 = 144
----> 117 = 144
Since, LHS is not equal to RHS, this set of numbers is not a pythagorean triplet.
9514 1404 393
Answer:
38.2°
Step-by-step explanation:
The law of sines tells you ...
sin(x)/15 = sin(27°)/11
sin(x) = (15/11)sin(27°) . . . . . multiply by 15
x = arcsin((15/11)sin(27°)) ≈ arcsin(0.619078) ≈ 38.2488°
x ≈ 38.2°
_____
<em>Additional comment</em>
In "law of sines" problems, you need to identify a side and opposite angle that you know both values of. Then, you need to identify whether you're looking for an angle or a side, and whether its opposite side or angle is known. If two angles are known, you can always figure the third from the sum of angles in a triangle.
Here, we have angle 27° opposite side 11. We are looking for an angle, and we know its opposite side. This lets us use the ratio formula directly. Since the angle is the unknown, it is useful to write the equation with sines on top and sides on the bottom.
The given angle is opposite the shorter of the given sides, so this triangle has two solutions. We assume that we want the solution that is an acute angle (141.8° is the other solution). That assumption is based on the drawing. Usually, you're cautioned not to take the drawings at face value.