Answer:
a = 1.764m/s^2
Explanation:
By Newton's second law, the net force is F = ma.
The equation for friction is F(k) = F(n) * μ.
In this case, the normal force is simply F(n) = mg due to no other external forces being specified
F(n) = mg = 15kg * 9.8 m/s^2 = 147N.
F(k) = F(n) * μ = 147N * 0.18 = 26.46N.
Assuming the object is on a horizontal surface, the force due to gravity and the normal force will cancel each other out, leaving our net force as only the frictional one.
Thus, F(net) = F(k) = ma
26.46N = 15kg * a
a = 1.764m/s^2
Explanation:
Graph A matches description 4 because the car is coming back.
Graph B matches description 3 because the speed of the car is decreasing.
Graph C matches the description 2 because the car is traveling at a constant rate.
Graph D matches the description 1 because the car is stopped.
Answer:
Explanation:
The frequency equation for waves is
where f is the frequency, v is the velocity, and lambda is the wavelength. Filling in:
so
v = .26(25) and
v = 6.5 meters/second
Gravity is the only one helping it.