Answer:
Force = 186 N
Explanation:
Torque is the rotational equivalent of linear force. It can be easely calculated using the formula :

Where
is a vector that from the origin of the coordinate system to the point at which the force is applied (the position vector),
is the applied force.
The easiest way of computing the force is by setting the origin of the coordinate system to the lowest point of the torque wrench. By doing this we have that
(the magnitud of the position vector) is 35cm.
Before computing the force we need to set all our values to the international system of units (SI). The torque is already in SI. The one missing is the length of the torque wrench (it is in centimeters and we need it in meters). So :
Now using the torque formula:


Where
is the smaller angle between the force and the position vector. Because the force is applied perpendiculary to the position vector
, thus :





so the force is approximately 186 N.
Answer:
Hydraulic press is called an instrument for multiplication of force. Why? Because it uses Pascal's idea and principle: F=p*S. If we apply small force to small piston you will generate a pressure. According to Pascal's law pressure is the same everywhere in closed system so the same pressure will act on large piston on the other side too.
Explanation:
The spring has been stretched 0.701 m
Explanation:
The elastic potential energy of a spring is the potential energy stored in the spring due to its compression/stretching. It is calculated as

where
k is the spring constant
x is the elongation of the spring with respect to its equilibrium position
For the spring in this problem, we have:
E = 84.08 J (potential energy)
k = 342.25 N/m (spring constant)
Therefore, its elongation is:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Answer:
The ball would hit the floor approximately
after leaving the table.
The ball would travel approximately
horizontally after leaving the table.
(Assumption:
.)
Explanation:
Let
denote the change to the height of the ball. Let
denote the time (in seconds) it took for the ball to hit the floor after leaving the table. Let
denote the initial vertical velocity of this ball.
If the air resistance on this ball is indeed negligible:
.
The ball was initially travelling horizontally. In other words, before leaving the table, the vertical velocity of the ball was
.
The height of the table was
. Therefore, after hitting the floor, the ball would be
below where it was before leaving the table. Hence,
.
The equation becomes:
.
Solve for
:
.
In other words, it would take approximately
for the ball to hit the floor after leaving the table.
Since the air resistance on the ball is negligible, the horizontal velocity of this ball would be constant (at
) until the ball hits the floor.
The ball was in the air for approximately
and would have travelled approximately
horizontally during the flight.