A rocket ship is accelerated by the SRB and the main engines for 2.0 minutes and the main engines for 8.5 minutes after the launch. The acceleration of the ship during the first 2.0 minutes is 11 m/s² (D).
A rocket ship has several engines and thrusters. We can divide its initial movement into 2 parts:
- From t = 0 min to t = 2.0 min, the SRB and the main engines act together and the speed goes from 0 m/s (rest) to 1341 m/s.
- From t = 2.0 min to t = 8.5 min, the main engines alone accelerate the ship form 1341 m/s to 7600 m/s.
We want to know the acceleration in the first part (first 2.0 minutes). We need to consider that:
- The speed increases from 0 m/s to 1341 m/s.
- The time elpased is 2.0 min.
- 1 min = 60 s.
The acceleration of the ship during the first 2.0 minutes is:

A rocket ship is accelerated by the SRB and the main engines for 2.0 minutes and the main engines for 8.5 minutes after the launch. The acceleration of the ship during the first 2.0 minutes is 11 m/s² (D).
Learn more: brainly.com/question/16274121
I would say the answer is 3 because by falling technically the ball would be kind of moving in the air. Plus potential energy is when for example a soccer ball isnt moving
Answer:
a)3.5s
b)28.57m/S
c)34.33m/S
d)44.66m/S
Explanation:
Hello!
we will solve this exercise numeral by numeral
a) to find the time the ball takes in the air we must consider that vertically the ball experiences a movement with constant acceleration whose value is gravity (9.81m / S ^ 2), that the initial vertical velocity is zero, we use the following equation for a body that moves with constant acceleration

where
Vo = Initial speed
=0
T = time
g=gravity=9.81m/s^2
y = height=60m
solving for time

T=3.5s
b)The horizontal speed remains constant since there is no horizontal acceleration.
with the value of the distance traveled (100m) and the time that lasts in the air (3.5s) we estimate the horizontal speed

c)
to find the final vertical velocity we use the equations for motion with constant velocity as follows
Vf=Vo+g.t
Vf=0+(9.81 )(3.5)=34.335m/S
d)Finally, to find the resulting velocity, we add the horizontal and vertical velocities vectorially, this is achieved by finding the square root of the sum of its squares

Work is force times distance, so W = 40 N * 10 m = 400 J