1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
coldgirl [10]
3 years ago
6

Question Part Points Submissions Used A car is stopped for a traffic signal. When the light turns green, the car accelerates, in

creasing its speed from 0 to 5.30 m/s in 0.812 s. (a) What is the magnitude of the linear impulse experienced by a 62.0-kg passenger in the car during the time the car accelerates? kg · m/s (b) What is the magnitude of the average total force experienced by a 62.0-kg passenger in the car during the time the car accelerates? N
Physics
1 answer:
olya-2409 [2.1K]3 years ago
7 0

(a) 328.6 kg m/s

The linear impulse experienced by the passenger in the car is equal to the change in momentum of the passenger:

I=\Delta p = m\Delta v

where

m = 62.0 kg is the mass of the passenger

\Delta v is the change in velocity of the car (and the passenger), which is

\Delta v = 5.30 m/s - 0 = 5.30 m/s

So, the linear impulse experienced by the passenger is

I=(62.0 kg)(5.30 m/s)=328.6 kg m/s

(b) 404.7 N

The linear impulse experienced by the passenger is also equal to the product between the average force and the time interval:

I=F \Delta t

where in this case

I=328.6 kg m/s is the linear impulse

\Delta t = 0.812 s is the time during which the force is applied

Solving the equation for F, we find the magnitude of the average force experienced by the passenger:

F=\frac{I}{\Delta t}=\frac{328.6 kg m/s}{0.812 s}=404.7 N

You might be interested in
A rocket ship has several engines and thrusters. While the Solid Rocket Booster (SRB) and main engines only work together during
Katarina [22]

A rocket ship is accelerated by the SRB and the main engines for 2.0 minutes and the main engines for 8.5 minutes after the launch. The acceleration of the ship during the first 2.0 minutes is 11 m/s² (D).

A rocket ship has several engines and thrusters. We can divide its initial movement into 2 parts:

  • From t = 0 min to t = 2.0 min, the SRB and the main engines act together and the speed goes from 0 m/s (rest) to 1341 m/s.
  • From t = 2.0 min to t = 8.5 min, the main engines alone accelerate the ship form 1341 m/s to 7600 m/s.

We want to know the acceleration in the first part (first 2.0 minutes). We need to consider that:

  • The speed increases from 0 m/s to 1341 m/s.
  • The time elpased is 2.0 min.
  • 1 min = 60 s.

The acceleration of the ship during the first 2.0 minutes is:

a = \frac{\Delta v }{t} ) \frac{(1341m/s-0m/s)}{2.0min} \times \frac{1min}{60s}  = 11 m/s^{2}

A rocket ship is accelerated by the SRB and the main engines for 2.0 minutes and the main engines for 8.5 minutes after the launch. The acceleration of the ship during the first 2.0 minutes is 11 m/s² (D).

Learn more: brainly.com/question/16274121

3 0
2 years ago
Which statement is true about a falling object? (Assume no
vladimir2022 [97]

I would say the answer is 3 because by falling technically the ball would be kind of moving in the air. Plus potential energy is when for example a soccer ball isnt moving

5 0
3 years ago
A ball is thrown horizontally from the top of a 60.0-m building and lands 100.0 m from the base of thebuilding. Ignore air resis
Bumek [7]

Answer:

a)3.5s

b)28.57m/S

c)34.33m/S

d)44.66m/S

Explanation:

Hello!

we will solve this exercise numeral by numeral

a) to find the time the ball takes in the air we must consider that vertically the ball experiences a movement with constant acceleration whose value is gravity (9.81m / S ^ 2), that the initial vertical velocity is zero, we use the following equation for a body that moves with constant acceleration

Y= VoT+0.5gt^{2}

where

Vo = Initial speed =0

T = time

g=gravity=9.81m/s^2

y = height=60m

solving for time

Y=0.5gt^2\\t=\sqrt{\frac{Y}{0.5g} } \\t=\frac{60}{0.5(9.81)} \\

T=3.5s

b)The horizontal speed remains constant since there is no horizontal acceleration. with the value of the distance traveled (100m) and the time that lasts in the air (3.5s) we estimate the horizontal speed

V=\frac{x}{t} =\frac{100}{3.5}=28.57m/s

c)

to find the final vertical velocity we use the equations for motion with constant velocity as follows

Vf=Vo+g.t    

Vf=0+(9.81 )(3.5)=34.335m/S          

d)Finally, to find the resulting velocity, we add the horizontal and vertical velocities vectorially, this is achieved by finding the square root of the sum of its squares

V=\sqrt{Vx^2+Vy^2} =\sqrt{34.33^2+28.57^2} =44.67m/S

7 0
3 years ago
PLEASE HURTY FAT ON QUIZ ATM!!!! 25 POINTS!!!!!! A student pushes a 40-N walk across the floor for a distance of 10 m how much w
algol13
Work is force times distance, so W = 40 N * 10 m = 400 J
8 0
3 years ago
When you take your 1400 kg car out for a spin, you go around a corner of radius 55 m with a speed of 18 m/s. the coefficient of
Lorico [155]
Are there ant answer choices
5 0
3 years ago
Other questions:
  • Jared is reading an article about the heavy rains that have fallen recently in his town. But he can’t separate the facts from th
    15·2 answers
  • tom and ted are sitting on seprate chairs that have wheels. tom pushes ted and, in turn, he starts moving too. in which directio
    15·1 answer
  • Three examples of each of Newton's Law 1st 2nd and 3rd
    5·1 answer
  • What is a cataclysmic comet?
    7·2 answers
  • Sand is falling into a conical pile at the rate of 10 m^3/s such that height of the pile is always half the diameter of the base
    15·2 answers
  • Rhythms that occur faster and slower than the beat are. Select one:. a. incorrect. b. not synchronized with the time signature.
    5·1 answer
  • The color of light emitted by a hot, solid object depends on ______.
    12·1 answer
  • What is force of gravity​
    6·1 answer
  • Inside most ball-point pens is a small spring that compresses as the pen is pressed against the paper. If a force of 0.1 N compr
    7·1 answer
  • 1) When you hold your nose and go underwater, you can still hear sounds that are made above the water, in the air, if they are l
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!