In ionic bonds, one atom gives one or more electrons to another atom so both can get closer to 8 valence electrons. Example: In potassium chloride (KCl), Potassium gives up one valence electron to chlorine, so that the outer shell of potassium has 8 valence electrons. This happens only between metals and nonmetals.
In covalent bonds, atoms share their electrons to reach 8 valence electrons. Example: In water (H2O), Oxygen shares one valence electron with one atom of hydrogen, and another valence electron with another atom of hydrogen. Oxygen now has 8 (4 unshared + 2 of its own + 1 from hydrogen + 1 from hydrogen), and each hydrogen has 2 valence electrons: one of its own and one from oxygen [ note that hydrogen only needs 2 valence electrons to be complete instead of 8].
In metallic bonds between metals, the valence electrons move much more freely than in other bonds. This free characteristic makes metals how they are: ductile, malleable, sectile, conductive, etc.
Combine the two solutions. If the resulting salt is basic, you know the base was stronger. If you end up with an acidic salt, the acid was stronger.
Answer: When using 645 L /s of O2 in a temperature and pressure of 195°C, 0.88 atm respectively, we will get 0.355Kg /s NO
Explanation:
- First we review the equation that represents the oxidation process of the NH3 to NO.
4NH3(g) + 5O2(g) ⟶4 NO(g) +6 H2O(l)
- Second we gather the information what we are going to use in our calculations.
O2 Volume Rate = 645 L /s
Pressure = 0.88 atm
Temperature = 195°C + 273 = 468K
NO molecular weight = 30.01 g/mol
- Third, in order to calculate the amount of NO moles produced by 645L/ s of O2, we must find out, how many moles (n) are 645L O2 by using the general gas equation PV =n RT
Let´s keep in mind that using this equation our constant R is 0.08205Lxatm/Kxmol
PV =n RT
n= PV / RT
n= [ 0.88atm x 645L/s] / [ (0.08205 Lxatm/Kxmol) x 468K]
n= 14.781 moles /s of O2
-
Fourth, now by knowing the amount of moles of O2, we can use the equation to calculate how many moles of NO will be produced and then with the molecular weight, we will finally know the total mass per second .
14.781 moles /s of O2 x 4moles NO / 5 moles O2 x 30.01g NO / 1 mol NO x 1Kg NO /1000g NO = 0.355Kg /s NO
Meanders, water<span> flows fastest on the outer bend of the river where the channel is deeper and there is less friction.</span>
4 protons , 3 protons , 2 protons