Hello!
<span>We have the following statement data:
</span>
Data:




<span>As the percentage is the mole fraction multiplied by 100:
</span>

<span>The mole fraction will be the percentage divided by 100, thus:
</span><span>What is the partial pressure of oxygen in this mixture?
</span>



<span>To calculate the partial pressure of the oxygen gas, it is enough to use the formula that involves the pressures (total and partial) and the fraction in quantity of matter:
</span>
In relation to

:




<span>
Answer:
</span><span>
b. 320.0 mm hg </span>
Divergent boundaries occur along spreading centers where plates are moving apart and new crust is created by magma pushing up from the mantle. Picture two giant conveyor belts, facing each other but slowly moving in opposite directions as they transport newly formed oceanic crust away from the ridge crest.
Answer:
27 min
Explanation:
The kinetics of an enzyme-catalyzed reaction can be determined by the equation of Michaelis-Menten:
![v = \frac{vmax[S]}{Km + [S]}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7Bvmax%5BS%5D%7D%7BKm%20%2B%20%5BS%5D%7D)
Where v is the velocity in the equilibrium, vmax is the maximum velocity of the reaction (which is directed proportionally of the amount of the enzyme), Km is the equilibrium constant and [S] is the concentration of the substrate.
So, initially, the velocity of the formation of the substrate is 12μmol/9min = 1.33 μmol/min
If Km is a thousand times smaller then [S], then
v = vmax[S]/[S]
v = vmax
vmax = 1.33 μmol/min
For the new experiment, with one-third of the enzyme, the maximum velocity must be one third too, so:
vmax = 1.33/3 = 0.443 μmol/min
Km will still be much smaller then [S], so
v = vmax
v = 0.443 μmol/min
For 12 μmol formed:
0.443 = 12/t
t = 12/0.443
t = 27 min
Sorry, but where are the ‘items’?
Answer: im not sure im only in 8th grade but im pretty sure Erosion i started learning about this last year i really cant explain it... im still hainving trouble with it.
Explanation: