Answer:
Torque; τ = 4.712 × 10^(-3) J
Magnetic moment; M = 0.0248 J/T
Explanation:
Torque is gotten from the formula;
τ = BIA
Where;
B is magnetic field
I is current
A is area
We are given;
B = 0.19T
I = 6.2A
Rectangle dimensions = 5cm by 8cm = 0.05m by 0.08m
Thus;
Area; A = 0.05m × 0.08m = 0.004 m²
Thus;
τ = 0.19 × 6.2 × 0.004
τ = 4.712 × 10^(-3) J
Formula for the magnetic moment is given by;
M = IA
M = 6.2 × 0.004
M = 0.0248 J/T
Answer:
36.408cm3
Explanation:
Since we acknowledge that density is d= m/v, once we switch it up to maintain v as the number to be found it will change to v=m/d. Therefore, 275.32/7.562 is 36.408 and the unit is cm cube!
Hope that helped!!
Mass have no effect for the projectile motion and u want to know the height "h"
first,
find the vertical and horizontal components of velocity
vertical component of velocity = 12 sin 61
horizontal component of velocity = 12 cos 61
now for the vertical motion ;
S = ut + (1/2) at^2
where
s = h
u = initial vertical component of velocity
t = 0.473 s
a = gravitational deceleration (-g) = -9.8 m/s^2
h=[12×sin 610×0.473]+[−9.8×(0.473)2]
u can simplify this and u will get the answer
h=.5Gt2
H=1.09m
Answer:
Magnitude of induced emf is 0.00635 V
Explanation:
Radius of circular loop r = 45 mm = 0.045 m
Area of circular loop 

Magnetic field is increases from 250 mT to 350 mT
Therefore change in magnetic field 
Emf induced is given by


Magnitude of induced emf is equal to 0.00635 V
The big bang is how astronomers explain the way the universe began. It is the idea that the universe began as just a single point, then expanded and stretched to grow as large as it is right now (and it could still be stretching).