Answer:
The correct answer is Dean has a period greater than San
Explanation:
Kepler's third law is an application of Newton's second law where the force is the universal force of attraction for circular orbits, where it is obtained.
T² = (4π² / G M) r³
When applying this equation to our case, the planet with a greater orbit must have a greater period.
Consequently Dean must have a period greater than San which has the smallest orbit
The correct answer is Dean has a period greater than San
Most common quantity of inertia is mass
Answer:
n the case of linear motion, the change occurs in the magnitude of the velocity, the direction remaining constant.
In the case of circular motion, the magnitude of the velocity remains constant, the change in its direction occurring.
Explanation:
Velocity is a vector therefore it has magnitude and direction, a change in either of the two is the consequence of an acceleration on the system.
In the case of linear motion, the change occurs in the magnitude of the velocity, the direction remaining constant.
= (v₂-v₁)/Δt
In the case of circular motion, the magnitude of the velocity remains constant, the change in its direction occurring.
= v2/R
In the general case, both the module and the address change
a = Ra ( a_{t}^2 + a_{c}^2)
.Answer;
Using Fmax=qVB
F=(1.6*10^-19 C)(5.860*10^6 m/s)(1.38 T)
ANS=1.29*10^-12 N
2. Using Amax=Fmax/ m
Amax =(1.29*10^-12 N) / (1.67*10^-27 kg)
ANS=1.93*10^15 m/s^2*
3. No, the acceleration wouldn't be the same. Since The magnitude of the electron is equal to that of the proton, but the direction would be in the opposite direction and also Since an electron has a smaller mass than a proton