Answer:
Explanation:
An information contains
25Hz and 75Hz sine wave
Sample frequency is 500Hz
The analogy signal are generally
y(t) = Asin(2πx/λ - wt), w=2πf
y1(t)=Asin(2πx/λ - wt)
y1(t)=Asin(2πx/λ - 2π•25t)
y1(t)=Asin(2πx/λ - 50πt)
Similarly
y2(t)=Asin(2πx/λ - 150πt)
Using Nyquist theorem
Nyquist Theorem states that in order to adequately reproduce a signal it should be periodically sampled at a rate that is 2 times the highest frequency you wish to record.
From sampling
f(nyquist)=f(sample)/2
f(nyquist)=500/2
f(nyquist)=250Hz
From signal
The highest frequency is 150Hz
F(nyquist) = 2×F(highest)
f(nyquist)= 2×150
f(nyquist)= 300Hz
Sample per frequency Ns is given as
Ns=F(sample)/F(highest signal)
Ns=500/150
Ns=3.33sample/period
This is above nyquist rate of 2sample/period
So signal below 300Hz reproduced without aliasing.
The highest resulting frequency is 300Hz
The answer is A because it was 2 minutes and she weighs 100 lbs.... so 2(100)=200.... 200 lbs of work
Answer:
1/60 mps
Explanation:
We would first have to divide 60 by 60 because there is 60mins per hour to get 1mpm. After that we would have to divide 1 by 60 because there are 60 secs in a min. So our final answer after doing 1/60 would be a fraction.
Answer:
f = 1.69*10^5 Hz
Explanation:
In order to calculate the frequency of the sinusoidal voltage, you use the following formula:
(1)
V_L: voltage = 12.0V
i: current = 2.40mA = 2.40*10^-3 A
L: inductance = 4.70mH = 4.70*10^-3 H
f: frequency = ?
you solve the equation (1) for f and replace the values of the other parameters:
The frequency of the sinusoidal voltage is f