Answer:
<u />
<u />
Explanation:
From the question we are told that:
The Electric field of strength direction =Right
The Velocity of The First Electron=V_0
The Velocity of The Second Electron=V_0
Therefore

Generally, the equation for the Horizontal Displacement of electron is mathematically given by

Where
Acceleration is given as

And
Time

Therefore horizontal displacement towards the left is

<u />
<u />
Answer:
The current in wire resistance 2Ω
a). 8696 A
b). fraction power 15.1% a 115kV
Explanation:
Resistance
Ω/Km*40km
R=2Ω
P=1000 MW
a).

Using law ohm
b).


%
Answer:
Option A
Explanation:
The statement makes sense since it's already explained that the galaxy is moving away from us and unlike option C which depicts that the galaxy is moving to us.
This statement makes sense. The redshift means that we see the galaxy moving away from us, so observers in that galaxy must also see us moving away from them—which means they see us redshifted as well
Answer:
the volume is 0.253 cm³
Explanation:
The pressure underwater is related with the pressure in the surface through Pascal's law:
P(h)= Po + ρgh
where Po= pressure at a depth h under the surface (we assume = 1atm=101325 Pa) , ρ= density of water ,g= gravity , h= depth at h meters)
replacing values
P(h)= Po + ρgh = 101325 Pa + 1025 Kg/m³ * 9.8 m/s² * 20 m = 302225 Pa
Also assuming that the bubble behaves as an ideal gas
PV=nRT
where
P= absolute pressure, V= gas volume ,n= number of moles of gas, R= ideal gas constant , T= absolute temperature
therefore assuming that the mass of the bubble is the same ( it does not absorb other bubbles, divides into smaller ones or allow significant diffusion over its surface) we have
at the surface) PoVo=nRTo
at the depth h) PV=nRT
dividing both equations
(P/Po)(V/Vo)=(T/To)
or
V=Vo*(Po/P)(T/To) = 0.80 cm³ * (101325 Pa/302225 Pa)*(277K/293K) = 0.253 cm³
V = 0.253 cm³
Answer:
If the starting GPE is doubled than it's KE would also double.