Answer:
244mm
Explanation:
I₁ = 3.35A
I₂ = 6.99A
μ₀ = 4π*10^-7
force per unit length (F/L) = 6.03*10⁻⁵N/m
B = (μ₀ I₁ I₂ )/ 2πr .........equation i
B = F / L ..........equation ii
equating equation i & ii,
F / L = (μ₀ I₁ I₂ )/ 2πr
Note F/L = B = F
F = (μ₀ I₁ I₂ ) / 2πr
2πr*F = (μ₀ I₁ I₂ )
r = (μ₀ I₁ I₂ ) / 2πF
r = (4π*10⁻⁷ * 3.35 * 6.99) / 2π * 6.03*10⁻⁵
r = 1.4713*10⁻⁵ / 6.03*10⁻⁵
r = 0.244m = 244mm
The distance between the wires is 244m
This is the photoelectric effect, and it is best explained by the particle model of light.
<h3>What is the photoelectric effect?</h3>
The photoelectric effect refers to the emission of negatively charged particles and electromagnetic radiation that hits an object.
The photoelectric effect shows how electrons can be released from a given object when this material is absorbing electromagnetic radiation.
The photoelectric effect is a fundamental piece of evidence for understanding the nature of light particles.
Learn more about the photoelectric effect here:
brainly.com/question/1359033
Answer:
13.1
Explanation:
that's what I'm gonna go with, but u can research more
Splitting<span> atoms. 'Fission' is another word for </span>splitting<span>. The process of </span>splitting<span> a nucleus is called nuclear fission. ... For fission to happen, the </span>uranium-235<span> or plutonium-239 nucleus must first absorb a neutron.</span>
<u>Answer:</u> The Young's modulus for the wire is 
<u>Explanation:</u>
Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.
The equation representing Young's Modulus is:

where,
Y = Young's Modulus
F = force exerted by the weight = 
m = mass of the ball = 10 kg
g = acceleration due to gravity = 
l = length of wire = 2.6 m
A = area of cross section = 
r = radius of the wire =
(Conversion factor: 1 m = 1000 mm)
= change in length = 1.99 mm = 
Putting values in above equation, we get:

Hence, the Young's modulus for the wire is 