Answer:
Ok:
Explanation:
So grams = mols*MolarMass. Here, MolarMass (MM) = 105.99g which can be found using the periodic table. mols is given to be 0.802. We can then plug in to get that it corresponds to 85.0g.
Answer:
True => ΔH°f for C₆H₆ = 49 Kj/mole
Explanation:
See Thermodynamic Properties Table in appendix of most college level general chemistry texts. The values shown are for the standard heat of formation of substances at 25°C. The Standard Heat of Formation of a substance - by definition - is the amount of heat energy gained or lost on formation of the substance from its basic elements in their standard state. C₆H₆(l) is formed from Carbon and Hydrogen in their basic standard states. All elements in their basic standard states have ΔH°f values equal to zero Kj/mole.
Answer:
Root mean squared velocity is different.
Explanation:
Hello!
In this case, since we have a mixture of oxygen and nitrogen at STP, which is defined as a condition whereas T = 298 K and P = 1 atm, we can infer that these gases have the same temperature, pressure, volume and moles but a different root mean squared velocity according to the following formula:

Since they both have a different molar mass (MM), nitrogen (28.02 g/mol) and oxygen (32.02 g/mol), thus we infer that nitrogen would have a higher root mean squared velocity as its molar mass is less than that of oxygen.
Best regards!
Answer:
12.09 L
Explanation:
Step 1: Convert 826.1 mmHg to atm
We will use the conversion factor 760 mmHg = 1 atm.
826.1 mmHg × 1 atm/760 mmHg = 1.087 atm
Step 2: Convert 427.8 J to L.atm
We will use the conversion factor 101.3 J = 1 L.atm.
427.8 J × 1 L.atm/101.3 J = 4.223 L.atm
Step 3: Calculate the change in the volume
Assuming the work done (w) is 4.223 L.atm against a pressure (P) of 1.087 atm, the change in the volume is:
w = P × ΔV
ΔV = w/P
ΔV = 4.223 L.atm/1.087 atm = 3.885 L
Step 4: Calculate the final volume
V₂ = V₁ + ΔV
V₂ = 8.20 L + 3.885 L = 12.09 L
For apex the answer is no solution