I think u turn down the heat not to sure
1 kg/L -------------- 0.001 kg/mL
22.4 kg/L --------- ??
22.4 x 0.001 / 1 => 0.0224 kg/mL
D, It is a flow of protons, is the best answer. Electricity is the flow of electrons, not protons.
Answer : The value of equilibrium constant for this reaction at 262.0 K is 
Explanation :
As we know that,

where,
= standard Gibbs free energy = ?
= standard enthalpy = -45.6 kJ = -45600 J
= standard entropy = -125.7 J/K
T = temperature of reaction = 262.0 K
Now put all the given values in the above formula, we get:


The relation between the equilibrium constant and standard Gibbs free energy is:

where,
= standard Gibbs free energy = -12666.6 J
R = gas constant = 8.314 J/K.mol
T = temperature = 262.0 K
K = equilibrium constant = ?
Now put all the given values in the above formula, we get:


Therefore, the value of equilibrium constant for this reaction at 262.0 K is 
Answer:
25 g/hr
Explanation:
Remember that the rate of reaction refers to the rate at which reactants are used up or or the rate at which products appear.
Hence;
Rate of reaction = mass of reactant used up/time taken
Mass of reactant used up= 2g
Time taken = 5 minutes or 0.08 hours
Rate of reaction = 2g/0.08 hours = 25 g/hr