Answer:
0.09
Step-by-step explanation:
hope it helps thank you
There are 14 chairs and 8 people to be seated. But among the 8. three will be seated together:
So 5 people and (3) could be considered as 6 entities:
Since the order matters, we have to use permutation:
¹⁴P₆ = (14!)/(14-6)! = 2,162,160, But the family composed of 3 people can permute among them in 3! ways or 6 ways. So the total number of permutation will be ¹⁴P₆ x 3!
2,162,160 x 6 = 12,972,960 ways.
Another way to solve this problem is as follow:
5 + (3) people are considered (for the time being) as 6 entities:
The 1st has a choice among 14 ways
The 2nd has a choice among 13 ways
The 3rd has a choice among 12 ways
The 4th has a choice among 11 ways
The 5th has a choice among 10 ways
The 6th has a choice among 9ways
So far there are 14x13x12x11x10x9 = 2,162,160 ways
But the 3 (that formed one group) could seat among themselves in 3!
or 6 ways:
Total number of permutation = 2,162,160 x 6 = 12,972,960
<span>For it to be finite, it must have an upper and lower bound. It has a lower bound...but what is the highest odd number greater than 27
There's no restriction; odd numbers go on forever.</span>
1:50 => 1 part oil + 50 parts high-octane gasoline
STIHL Premium two-stroke engine oil comes in individual bottles of 100ml, 200ml, 500ml and 1000ml (1 L).