Question:
Which of the following statements correctly describe(s) the driving forces for diffusion of Na+ and K+ ions through their respective channels? Select all that apply.
A)The diffusion of Na+ ions into the cell is facilitated by the Na+ concentration gradient across the plasma membrane.
B)The diffusion of Na+ ions into the cell is impeded by the electrical gradient across the plasma membrane.
C)The diffusion of K+ ions out of the cell is impeded by the K+ concentration gradient across the plasma membrane.
D)The diffusion of K+ ions out of the cell is impeded by the electrical gradient across the plasma membrane. The electrochemical gradient is larger for Na+ than for K+.
Answer:
"The concentration gradient and the electro-chemical gradient" describes the driving forces for diffusion of Na+ and K+ ions through their respective channels
Explanation:
The Na ions diffusion inside the cell is facilitated by the concentration gradient of the Na ions which is present across the plasma membrane. Hence, the diffusion of the K ions which is present outside the cell and will be impeded due to the electrical gradient which is present near the plasma membrane. Thus, the electro-chemical gradient is greater as compared to the Na ion than that of the K ion.
A. helium, neon and argon, because they are in the same group or column
Answer:
Explanation:
A sound knowledge of specific heat capacity of the metals is required in this case.
The specific heat capacity of a metal is the quantity of heat required to the raise the temperature of a unit mass of it by 1°C.
It is related to quantity of heat using the expression below;
H = m c Δt
where m is the mass
c is the specific heat capacity
Δt is the temperature change
let us make the specific the subject of the expression;
c = 
we can see that there is an inverse relationship between specific heat and temperature change.
The specific heat capacity of a body is an intensive property that is unique to the metal.
The higher the specific heat capacity, the lower the amount of temperature change in it.
Let us find the specific heat capacity of the given metals;
Aluminium 0.897J/gK
Iron 0.412J/gK
Silver 0.24J/gK
After the heat is supplied,
Silver > Iron > Aluminium in terms of temperature change
B is correct. Molecules move faster when they are hotter because they have more energy. You can notice this change with your naked eye. Molecules in solids don't move. They have barely any energy. Hope this helps! ;)