<span>In real machines, efficiency is always less than 1 .</span>
Answer: d = 33 cm or 0.33 m
Explanation: In physics, Work is the amount of energy transferred to an object to make it move. It can be expressed by:
W = F.d.cosθ
F is the force applied to the object, d is the displacement and θ is the angle formed between the force and the displacement.
For the ice block, the angle is 0, i.e., force and distance are at the same direction, so:
W = F.d.cos(0)
W = F.d
To determine d:
d = 
d = 
d = 0.33 m
The distance d the block ice moved is 33 cm.
The total quantity of electrons that have flowed through a circuit is a
quantity of charge, measured in Coulombs, or in Ampere-seconds.
The <em><u>rate</u></em> of flow of electrons, or more accurately the rate of flow of
the charge on them, is electrical current. Its unit is the Ampere.
1 Ampere is 1 Coulomb of charge per second.
v = x/t
v = average velocity, x = displacement, t = elapsed time
Given values:
x = 6km south, t = 60min
Plug in and solve for v:
v = 6/60
v = 0.1km/min south
Answer:
a = 2.94 m/s²
Explanation:
In order for the cup not to slip, the unbalanced force on cup must be equal to the frictional force:
Unbalanced Force = Frictional Force
ma = μR = μW
ma = μmg
a = μg
where,
a = maximum acceleration for the cup not to slip = ?
μ = coefficient of static friction = 0.3
g = acceleration due to gravity = 9.8 m/s²
Therefore,
a = (0.3)(9.8 m/s²)
<u>a = 2.94 m/s²</u>