Answer:
Tp/Te = 2
Therefore, the orbital period of the planet is twice that of the earth's orbital period.
Explanation:
The orbital period of a planet around a star can be expressed mathematically as;
T = 2π√(r^3)/(Gm)
Where;
r = radius of orbit
G = gravitational constant
m = mass of the star
Given;
Let R represent radius of earth orbit and r the radius of planet orbit,
Let M represent the mass of sun and m the mass of the star.
r = 4R
m = 16M
For earth;
Te = 2π√(R^3)/(GM)
For planet;
Tp = 2π√(r^3)/(Gm)
Substituting the given values;
Tp = 2π√((4R)^3)/(16GM) = 2π√(64R^3)/(16GM)
Tp = 2π√(4R^3)/(GM)
Tp = 2 × 2π√(R^3)/(GM)
So,
Tp/Te = (2 × 2π√(R^3)/(GM))/( 2π√(R^3)/(GM))
Tp/Te = 2
Therefore, the orbital period of the planet is twice that of the earth's orbital period.
The answer is: Salt! :)
Have a great day!
Answer:
A
Explanation:
So a pulse is a part of a mechanical wave, and mechanical waves are energy transfer trough some medium, in this case a stretched spring. So the correct answer is (A) energy only. The pulse cant be transferred into mass.
We will apply the concepts related to Newton's second law. At the same time we will convert everything to the system of international units.
The values of the velocities are,
We know that the acceleration is equivalent to the change of the speed in a certain time therefore
Now applying the Newton's second law we have,
Therefore the approximate magnitude is 8516.36N
False, it experiences a constant change in ACCELERATION in free fall.