This question requires the use of the equation of motion:
v = u + at [v is final velocity (0), u is initial velocity (24), a is acceleration, t is time (13)]
to calculate the acceleration. This can then be multiplied by the mass of the plane to obtain the net force via:
F = ma (F is force, m is mass, a is acceleration)
First, we calculate the acceleration:
0 = 24 + 13(a)
a = -24/13 m/s^2
The force is then:
F = 90000 * (-24/13)
F = -1.66*10^5 Newtons
The negative sign indicates that the force and acceleration are in the opposite direction as the velocity (since we took velocity to be positive)
Answer:
BC and DE
Explanation:
In the given figure, the velocity time graph is shown. We know that the area under v-t curve gives the displacement of the particle.
Area under AB, 
Area under BC, 
Area under CD, 
Area under DE, 
Area under EF, 
So, form above calculations it is clear that, during BC and DE undergo equal displacement. Hence, the correct option is (c) "BC and DE = 4 meters".
It gets larger because
well let me give you an example
so today in class we looked at a lava lamp with wax inside and there was a lightbulb at the bottom.
we watched as the wax floated up because the molecules inside the wax spreads out and makes the wax less dense.
the wax floats up because (which is related to the balloon getting bigger) the wax is getting less dense and the particles get bigger which ALSO makes the wax less dense.
hope this helps and hope you can relate it to your problem! say thanks if I did help AT ALL! :)
Answer:
The table can be used to predict the properties of elements, even those that have not yet been discovered. Columns (groups) and rows (periods) indicate elements that share similar characteristics.
The table makes trends in element properties apparent and easy to understand.
The table provides important information used to balance chemical equations. Atoms are important because they form the basic building blocks of all visible matter in the universe. There are 92 types of atoms that exist in nature, and other types of atoms can be made in the lab. The different types of atoms are called elements. Hydrogen, gold and iron are examples of elements comprised of unique types of a single kind of atom.
Explanation:
Answer:
0.015 m/s2
Explanation:
Using Newtons 2nd law.
F = ma where F = Force applied, m = mass of the object and a = acceleration acquired.
So substitute the values in SI units.
m =
kg
Therefore F = 0.003×5 = 0.015 m/s2