Answer:
Michael's final velocity is 19.62 m/s.
Explanation:
We can find the final velocity of Michael by using the following kinematic equation:
(1)
Where:
: is the final velocity =?
: is the initial velocity = 1.62 m/s
a: is the acceleration = 1.2 m/s²
t: is the time = 15 s
By entering the above values into equation (1) we have:


Therefore, Michael's final velocity is 19.62 m/s.
I hope it helps you!
Answer:
(a) Distance traveled = 75.3846 m
(b) Velocity of car at that instant will be 14 m/sec
Explanation:
We have given acceleration of the car 
Initial velocity of the cart u = 0 m/sec
(a) According to second equation of motion we know that 
So distance traveled by car 
As the truck is moving with constant speed
So distance traveled by truck 
As the truck overtakes the car
So 


So distance traveled 
(b) From second equation of motion we know that v = u+at
So v = 0+1.3×10.769 = 14 m /sec
A mode that uses sliding friction would be sledding. :)
Answer:
Explanation:
Energy of system of charges
= k q₁q₂ / r₁₂ + k q₁q₃ / r₁₃ + k q₃q₂ / r₃₂
q₁ , q₂ and q₃ are charges and r₁₂ , r₁₃ , r₃₂ are densities between them
9 x 10⁹ ( 2x2 x10⁻¹²/ .25 + 2x2 x10⁻¹²/ .25 + 2x2 x10⁻¹²/ .25 )
= 9 x 10⁹ x 3 x 16 x 10⁻¹²
= 432 x 10⁻³
= .432 J .