Answer:
The increase in potential energy of the ball is 115.82 J
Explanation:
Conceptual analysis
Potential Energy (U) is the energy of a body located at a certain height (h) above the ground and is calculated as follows:
U = m × g × h
U: Potential Energy in Joules (J)
m: mass in kg
g: acceleration due to gravity in m/s²
h: height in m
Equivalences
1 kg = 1000 g
1 ft = 0.3048 m
1 N = 1 (kg×m)/s²
1 J = N × m
Known data




Problem development
ΔU: Potential energy change
ΔU = U₂ - U₁
U₂ - U₁ = mₓgₓh₂ - mₓgₓh₁
U₂ - U₁ = mₓg(h₂ - h₁)

The increase in potential energy of the ball is 115.82 J
The total amount of energy always stays the same because of the law of conservation of energy, meaning that there is always the same amount of energy, it just gets turned into different forms like potential energy, kinetic energy, sound, thermal, etc.
The answer is a
the equation needs to be balanced. There are fewer oxygen atoms in the equation than hydrogen or a carbon
Answer:
F = 352 N
Explanation:
we know that:
F*t = ΔP
so:
F*t = M
-M
where F is the force excerted by the wall, t is the time, M the mass of the ball,
the final velocity of the ball and
the initial velocity.
Replacing values, we get:
F(0.05s) = (0.8 kg)(11m/s)-(0.8 kg)(-11m/s)
solving for F:
F = 352 N
The volume of a warmed part of the air is reduced and its density increases.
Explanation:
In a convective form of heat transfer, the volume of a warmed part of air is not reduced and its density does not increase.
During convection, heat causes the warm part of the air to expand and its volume increases. When volume increases, density is reduced.
- Convection is a form of heat transfer that involves the actual movement of particles of the medium.
- It usually occurs in fluids i.e gases and liquids.
- In convection, the cold part exerts a buoyant force on the warmer air below and causes it to rise.
- As the warmer part is rising the cooler part replaces it and a convective cell is formed in the process.
Learn more:
Energy transfer in the sun brainly.com/question/1140127
#learnwithBrainly