Answer:
13.75
Explanation:
Density is equal to mass divided by volume. 110/8 = 13.75
2H2O = 2H2 + O2.
<h3><u>Explanation</u>:</h3>
Balancing equations is very essential because of the fact that it represents the stoichiometric quantities of the reactants needed to react to form the product. The ratio of the weights of reactant and product are also very well understood from this.
Here in this equation, the water is broken into hydrogen and oxygen. The balanced reaction is
2H2O = 2H2 + O2.
Two moles of water is broken down into 2 moles of hydrogen and one mole of oxygen.
Answer:
h2+O ---> H2O
reactants: H2 & O
products: H2O
Explanation:
The simple reaction that produces a water molecule from H2 and O would be the one written above, even though there are 2 hydrogen molecules, they will form an H2 molecule rather than 2 individual H molecules (almost never seen) the reactants would be your hydrogen and oxygen molecules individually before they bond to form a molecule of water (H2O) which is the product
Answer:
- <em>The average mass of calcium in each sample is: </em><u>0.978 g</u>
<em />
- <em>The absolute uncertainty is: </em><u>0.008 g</u>
Explanation:
The <em>absolute uncertainty </em>of the total samples indicated in the statement is ± 0.1 g.
When you multiply or divide quantities with uncertainties, you calculate the final uncertanty by adding the <em>relative uncertainties</em> together.
The relative uncertainty is the absolute uncertainty divided by the quantity:
- Relative uncertainty = 0.1g / 12.2 g = 0.008
The average mass of calcium is calculated using proportions, along with the molar masses:
- Molar mass of calcium: 40.078 g/ mol (from a periodic table)
- Molar mass of calcite: 100.085 g/mol (given)
Proportion:
- 40.078 g of calcium / 100.085 g of calcite = x / 12.2 g of calcite
- x = 12.2 × 40.078 / 100.085 g = 4.89 g calcium
So the total mass of calcium in the five samples is 4.89 g, and the average mass in each sample is:
- Average mass = total mass of five samples / number of samples
- Average mass = 4.89 g / 5 = <u>0.978 g of calcium</u>
So, the first answer is that the average mass of calcium in each sample is 0.978 g ( keep 3 signficant figures, such as the quntitiy 12.2 shows, as you have only used multiplication and division).
The absolute uncertainty of each sample is the relative uncertainty multiplied by the average mass of calcium of the five samples, rounded to one decimal:
- Absolute uncertainty = 0.978 g × 0.008 ≈ 0.008 g
The answer to the secon question is that the absolute uncertaingy of calcium in each sample is 0.008 g.