Answer:
In numerical order left to right, they are arranged by the number of protons in the nucleus of a single atom of each element
Element 6 has the lowest ionization energy
The absorbance reported by the defective instrument was 0.3933.
Absorbance A = - log₁₀ T
Tm = transmittance measured by spectrophotometer
Tm = 0.44
Absorbance reported in this equipment = -log₁₀ (0.44) = 0.35654
True absorbance can be calculated by true transmittance, Tm = T+S(α-T)
S = fraction of stray light = 6%= 6/100 = 0.06
α= 1, ideal case
T = true transmittance of the sample
Tm = T+S(α-T)
now, T= Tm-S/ 1-S = 0.44-0.06/ 1-0.06 = 0.404233
therefore, actual reading measured is A = -log₁₀ T = -log₁₀ (0.404233)
i.e; 0.3933
To know more about transmittance click here:
brainly.com/question/17088180
#SPJ4
Answer:
92.8%
Explanation:
Step 1: Given data
- Mass of lead in the bullet (mPb): 11.6 g
- Mass of tin in the bullet (mSn): 0.5 g
- Mass of antimony in the bullet (mSb): 0.4 g
Step 2: Calculate the total mass of the bullet
The total mass of the bullet is equal to the sum of the masses of the elements that form it.
m = mPb + mSn + mSb = 11.6 g + 0.5 g + 0.4 g = 12.5 g
Step 3: Calculate the mass percentage of Pb in the bullet
We will use the following expression.
%Pb = mPb / m × 100%
%Pb = 11.6 g / 12.5 g × 100% = 92.8%
Answer: The partial pressure of neon is 173 mmHg
Explanation:
According to Dalton's law, the total pressure is the sum of individual pressures.

Given :
=total pressure of gases = 490 mm Hg
= partial pressure of Helium = 215 mmHg
= partial pressure of argon = 102 mm Hg
= partial pressure of neon= ?



Thus partial pressure of neon is 173 mmHg