To help fight off disease and viruses
Answer:
Approximately
(assuming that
.)
Explanation:
Let
denote the force that this spring exerts on the object. Let
denote the displacement of this spring from the equilibrium position.
By Hooke's Law, the spring constant
of this spring would ensure that
.
Note that the mass of the object attached to this spring is
. Thus, the weight of this object would be
.
Assuming that this object is not moving, the spring would need to exert an upward force of the same magnitude on the object. Thus,
.
The spring in this question was stretched downward from its equilibrium by:
.
(Note that
is negative since this displacement points downwards.)
Rearrange Hooke's Law to find
in terms of
and
:
.
Answer: barometer.
A cyclone is a storm or system of winds that rotates around a center of low atmospheric pressure. An anticyclone is a system of winds that rotates around a center of high atmospheric pressure.
C) When both objects have the same temperature.
<em>Hope this helps!</em>
Answer:
a = 4.9(1 - sinθ - 0.4cosθ)
Explanation:
Really not possible without a complete setup.
I will ASSUME that this an Atwood machine with two masses (m) connected by an ideal rope passing over an ideal pulley. One mass hangs freely and the other is on a slope of angle θ to the horizontal with coefficient of friction μ. Gravity is g
F = ma
mg - mgsinθ - μmgcosθ = (m + m)a
mg(1 - sinθ - μcosθ) = 2ma
½g(1 - sinθ - μcosθ) = a
maximum acceleration is about 2.94 m/s² when θ = 0
acceleration will be zero when θ is greater than about 46.4°