A. Advanced new safety features that get everyone home at night.
Answer:28m/s
Explanation:I got one point so yeah hope this help
Force = (mass) x (acceleration)
= (0.75 kg) x (25 m/s²)
= (0.75 x 25) kg-m/s²
= 18.75 newtons .
Note that even though we're talking about a 'hit', the acceleration only
lasts as long as the bat is in contact with the ball. Once the ball leaves
the bat, it travels at whatever speed it had at the instant when they parted.
Any change in its speed or direction after that is the result of gravity, air
resistance, and the fielder's mitt. I learned a lot about these things a few
weeks ago, since I live in Chicago, about 6 miles from Wrigley Field, in
a house full of Cubs fans.
There diffrent but can cause the same thing
Answer:
k = 6,547 N / m
Explanation:
This laboratory experiment is a simple harmonic motion experiment, where the angular velocity of the oscillation is
w = √ (k / m)
angular velocity and rel period are related
w = 2π / T
substitution
T = 2π √(m / K)
in Experimental measurements give us the following data
m (g) A (cm) t (s) T (s)
100 6.5 7.8 0.78
150 5.5 9.8 0.98
200 6.0 10.9 1.09
250 3.5 12.4 1.24
we look for the period that is the time it takes to give a series of oscillations, the results are in the last column
T = t / 10
To find the spring constant we linearize the equation
T² = (4π²/K) m
therefore we see that if we make a graph of T² against the mass, we obtain a line, whose slope is
m ’= 4π² / k
where m’ is the slope
k = 4π² / m'
the equation of the line of the attached graph is
T² = 0.00603 m + 0.0183
therefore the slope
m ’= 0.00603 s²/g
we calculate
k = 4 π² / 0.00603
k = 6547 g / s²
we reduce the mass to the SI system
k = 6547 g / s² (1kg / 1000 g)
k = 6,547 kg / s² =
k = 6,547 N / m
let's reduce the uniqueness
[N / m] = [(kg m / s²) m] = [kg / s²]