They have a negative charge and rotate around the nucleus
Answer:
Sam will do 1152 J of work to stop the boat
Explanation:
Work: This is defined as the product of force and distance, the S.I unit of work is Joules. At any point in science, during calculation Energy and worked can be interchange because they have the same unit.
E = W = 1/2mv²................ Equation 1
Where E = energy, W = work, m = mass, v = velocity.
Given: m = 900 kg, v = 1.6 m/s
Substituting these values into equation 1
W = 1/2(900)(1.6)²
W = 450×2.56
W = 1152 J.
Therefore Sam will do 1152 J of work to stop the boat
Answer:1.084
Explanation:
Given
mass of Pendulum M=10 kg
mass of bullet m=5.5 gm
velocity of bullet u
After collision let say velocity is v
conserving momentum we get
![mu=(M+m)v](https://tex.z-dn.net/?f=mu%3D%28M%2Bm%29v)
![v=\frac{m}{M+m}\times u](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bm%7D%7BM%2Bm%7D%5Ctimes%20u)
Conserving Energy for Pendulum
Kinetic Energy=Potential Energy
![\frac{(M+m)v^2}{2}=(M+m)gh](https://tex.z-dn.net/?f=%5Cfrac%7B%28M%2Bm%29v%5E2%7D%7B2%7D%3D%28M%2Bm%29gh)
here
from diagram
therefore
![v=\sqrt{2gL(1-\cos \theta )}](https://tex.z-dn.net/?f=v%3D%5Csqrt%7B2gL%281-%5Ccos%20%5Ctheta%20%29%7D)
initial velocity in terms of v
![u=\frac{M+m}{m}\times \sqrt{2gL(1-\cos \theta )}](https://tex.z-dn.net/?f=u%3D%5Cfrac%7BM%2Bm%7D%7Bm%7D%5Ctimes%20%5Csqrt%7B2gL%281-%5Ccos%20%5Ctheta%20%29%7D)
For first case ![\theta =6.8^{\circ}](https://tex.z-dn.net/?f=%5Ctheta%20%3D6.8%5E%7B%5Ccirc%7D%20)
![u_1=\frac{M+m_1}{m_1}\times \sqrt{2gL(1-\cos 6.8)}](https://tex.z-dn.net/?f=u_1%3D%5Cfrac%7BM%2Bm_1%7D%7Bm_1%7D%5Ctimes%20%5Csqrt%7B2gL%281-%5Ccos%206.8%29%7D)
for second case ![\theta =11.4^{\circ}](https://tex.z-dn.net/?f=%5Ctheta%20%3D11.4%5E%7B%5Ccirc%7D)
![u_2=\frac{M+m_2}{m_2}\times \sqrt{2gL(1-\cos 11.4)}](https://tex.z-dn.net/?f=u_2%3D%5Cfrac%7BM%2Bm_2%7D%7Bm_2%7D%5Ctimes%20%5Csqrt%7B2gL%281-%5Ccos%2011.4%29%7D)
Therefore ![\frac{u_1}{u_2}=\frac{\frac{M+m_1}{m_1}\times \sqrt{2gL(1-\cos 6.8)}}{\frac{M+m_2}{m_2}\times \sqrt{2gL(1-\cos 11.4)}}](https://tex.z-dn.net/?f=%5Cfrac%7Bu_1%7D%7Bu_2%7D%3D%5Cfrac%7B%5Cfrac%7BM%2Bm_1%7D%7Bm_1%7D%5Ctimes%20%5Csqrt%7B2gL%281-%5Ccos%206.8%29%7D%7D%7B%5Cfrac%7BM%2Bm_2%7D%7Bm_2%7D%5Ctimes%20%5Csqrt%7B2gL%281-%5Ccos%2011.4%29%7D%7D)
![\frac{u_1}{u_2}=\frac{1819.181\times 0.0838}{1001\times 0.1404}](https://tex.z-dn.net/?f=%5Cfrac%7Bu_1%7D%7Bu_2%7D%3D%5Cfrac%7B1819.181%5Ctimes%200.0838%7D%7B1001%5Ctimes%200.1404%7D)
![\frac{u_1}{u_2}=1.084](https://tex.z-dn.net/?f=%5Cfrac%7Bu_1%7D%7Bu_2%7D%3D1.084)
i.e.![\frac{v_1}{v_2}=1.084](https://tex.z-dn.net/?f=%5Cfrac%7Bv_1%7D%7Bv_2%7D%3D1.084)
Concave lens. These are used in making the objectives of reflection telescopes