Answer:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops, then <u>the specific heats of both objects will be equal.</u>
Explanation:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops when the two<u> objects of same mass</u> are brought into contact, then their specific heat capacity is equal.
<u>We can prove this by the equation of heat for the two bodies:</u>
<em>According to given condition,</em>


<em>when there is no heat loss from the system of two bodies then </em>


- Thermal conductivity is ultimately affects the rate of heat transfer, however the bodies will attain their final temperature based upon their mass and their specific heat capacities.
The temperature of the colder object will rise twice as much as the temperature of the hotter object only in two cases:
- when the specific heat of the colder object is half the specific heat of the hotter object while mass is equal for both.
OR
- the mass of colder object is half the mass of the hotter object while their specific heat is same.
Answer & Explanation:
Crashing into the asteroid would cause the satellite to slow down, stop, or reverse direction, because it is a force in the opposite direction to the satellite's motion. Whichever crash was a stronger force would cause it to change motion more. It takes a stronger force to change the velocity of a more massive object.
Answer:
changes electrical energy into mechanical energy
Answer:
c)
Explanation:
As we know that resultant force is the net force that is acting on the system
As per Newton's II law we know that net force is product of mass and acceleration
so we will have

here we know
m = 80 kg
for circular motion acceleration is given as


now we have



Answer:
w=3.05 rad/s or 29.88rpm
Explanation:
k = coefficient of friction = 0.3900
R = radius of the cylinder = 2.7m
V = linear speed of rotation of the cylinder
w = angular speed = V/R or to rewrite V = w*R
N = normal force to cylinder
N=


These must be balanced (the net force on the people will be 0) so set them equal to each other.





There are 2*pi radians in 1 revolution so:

So you need about 30 RPM to keep people from falling out the bottom