Yes... This is a question google could answer. Just Saying
<span>The person is dragging
with a force of 58 lbs at an angle of 27 degrees relating to the ground. We
want to use cosine function to look for the horizontal force component. And
then we can compute for W = (Horizontal Force) x (Distance). We want the
horizontal force component since that is the component that is parallel to the
direction the cart is moving. </span><span>
(cos 27 degrees)(58 lbs) = 51.69 lbs (This is the horizontal
force component.)
W = (51.69 lbs) x (70 ft) = 3618.3 ft*lbs</span>
844J.
Assuming that there were no encumbrances during it's foreswing and it reached it's full potential at apogee.
Answer:
at point F
Explanation:
To know the point in which the pendulum has the greatest potential energy you can assume that the zero reference of the gravitational energy (it is mandatory to define it) is at the bottom of the pendulum.
Then, when the pendulum reaches it maximum height in its motion the gravitational potential energy is
U = mgh
m: mass of the pendulum
g: gravitational constant
The greatest value is obtained when the pendulum reaches y=h
Furthermore, at this point the pendulum stops to come back in ts motion and then the speed is zero, and so, the kinetic energy (K=1/mv^2=0).
A) answer, at point F
Answer:

Explanation:
The magnitude of the electric field between two parallel conducting plates is defined as:

Here
is the potential difference between the plates and d its separation.
The electric potential energy is defined as the product between the particle's charge and the potential difference:

Solving for
and replacing in the electric field formula:

In this case we have a double charged ion, so
:
