Answer:
3.37 × 10²³ molecules
Explanation:
Given data:
Mass of C₆H₁₂O₆ = 100 g
Number of molecules = ?
Solution:
Number of moles of C₆H₁₂O₆:
Number of moles = mass/molar mass
Number of moles = 100 g/ 180.16 g/mol
Number of moles = 0.56 mol
Number of molecules:
1 mole contain 6.022 × 10²³ molecules
0.56 mol × 6.022 × 10²³ molecules /1 mol
3.37 × 10²³ molecules
Yes, Bobby is correct
Explanation:
Anomalously high boiling point of water is as a result of the intermolecular forces between the molecules of water.
The intermolecular forces found in water are the very strong hydrogen bonds. The bulk of the physical properties of matter are due to the intermolecular forces that they possess.
- Hydrogen bonds are stronger than van der waals forces and they are more effective in binding molecules together into larger units.
- Substances whose molecules join via hydrogen bonds have higher boiling points i.e lower volatility than those with van der waals forces.
- Hydrogen bond is actually an electrostatic attraction between hydrogen atom of none molecule and the electronegative atom(O or N or F) of a neighboring molecule.
Learn more:
Hydrogen bonds brainly.com/question/10602513
#learnwithBrainly
Rows are periods, columns are groups
The Lewis structures for formate ion and carbon dioxide are shown in the attached pictures. As you can see, the formate ion consists of one C=O bond and one C-O bond, while carbon dioxide has two C=O bonds. Double bonds are weaker, hence, longer compared to single bonds. Therefore, the C-O bonds in the formate ion is shorter than those in carbon dioxide.